
 

Studies on Automatic Image Segmentation 
Method for Canopy Density Measurement of 
Chinese Alligator (Alligator sinensis) Habitat

Ke Sun, Guangwei Fan, Yujie Zhang, Ji Luo, Xiaobing Wu and Tao Pan*

College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 
241000, P. R. China.

Article Information
Received 29 August 2022 
Revised 18 October 2022
Accepted 11 November 2022
Available online 29 March 2023
(early access)
Published 03 June 2024

Authors’ Contribution
KS developed the method and 
analyzed the data. GF captured the 
images of Chinese alligator habitat. 
YZ prepared all the figures and tables. 
JL wrote the paper. XW helped to 
perform the analysis. TP designed the 
experiments.

Key words
Habitat, Canopy density 
measurement, Image segmentation, 
Threshold, Bimodal method

In order to develop a rapid measuring method for canopy density of Chinese alligator (Alligator sinensis) 
habitat, the images of the habitat are captured from 1 meter off the ground. Then, a canopy density 
calculating method is established based on an adaptive bimodal threshold segmentation algorithm. 
The accuracy of the proposed method is evaluated and compared with two methods based on Otsu’s 
algorithm and iterative algorithm, respectively. The results show that the accuracy of the method based 
on the adaptive bimodal threshold segmentation algorithm is the highest (absolute error: 0.018±0.016) 
among these three methods. Please note that the accuracy is higher for images captured on cloudy days 
as compared to the images captured on sunny days. Moreover, the accuracy is highest for the images with 
low canopy density (absolute error: 0.006±0.004), and is relatively low for the images with high canopy 
density (absolute error: 0.020±0.016). The adaptive bimodal threshold segmentation method satisfies the 
accuracy requirements of canopy density of Chinese alligator (Alligator sinensis) habitat.

INTRODUCTION

The Chinese alligator (Alligator sinensis) is a national-
level protected animal endemic to China, mainly found 

around lakes, ponds, and swamps in the lower reaches 
of the Yangtze River. The construction of transportation 
networks, over-hunting, pesticide and fertilizer abuse, 
and climate change has greatly affected the habitat of the 
Chinese alligator over past half century, leading to further 
fragmentation of its habitat (Thorbjarnarson and Wang, 
2010; Zhang et al., 2015). Although the government has 
made great efforts to protect the population of Chinese 
alligator in recent years, there are only about 200 individuals 
in the wild according to 2019 statistics, mainly distributed 
in counties of Xuanzhou, Jingxian, Guangde, Langxi, 
and Nanling. The distribution map is shown in Figure 1. 
The population of the Chinese alligator needs recovery. 
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Fig. 1. Distribution map of Chinese alligator.

The expansion speed of wild Chinese alligator populations 
is strongly related to effective reproduction in the wild 
(Zhou, 2009). In the wild, the alligators use withered 
branches and leaves to build their nests. Sunlight and 
the decaying nesting material keep the nests warm for 
egg hatching. Therefore, temperature, humidity, and the 
canopy density of nesting location are important factors 
that affect the growth and reproduction of alligators 
(Zhang et al., 2006; Xia, 2009; Wang et al., 2011). The 
canopy density, cover ratio of vegetation to the ground, 
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severely affect the temperature, humidity, and seclusion 
of the alligator habitat, thus greatly influencing the cycle 
of nest-building and the nest site selection. Please note 
that inappropriate canopy is not suitable for alligator to 
build nests and spawn, as the canopy density affects the 
photoperiod, relative humidity, and temperature of a field. 
A low nest temperature prevents the development of 
early embryos and female alligators delay the egg laying 
until suitable conditions are available (Wang and Xia, 
2005). The hot and humid environment accelerates the 
metabolism and activity of alligators, which promotes the 
behavior of egg laying and nest building (Zeng and Fang, 
2011). Therefore, the canopy density is a key parameter 
for studying the nest site selection of Chinese alligator 
and evaluating the habitat. In order to measure the canopy 
density quickly and accurately, this study aims to provide 
a new method for the measurement of canopy density of 
Chinese alligator habitat. 

However, there is no standardized method proposed 
for canopy density measurement. The measuring methods 
are limited by the study object and the technology level. In 
earlier years, the common measuring method for canopy 
density included visual inspection or spherical or vertical 
densitometry method (Fiala et al., 2006; Korhonen et al., 
2006). After the availability of digital cameras, digital 
image based photographic methods are used for measuring 
the canopy density (Qi et al., 2009; Lang et al., 2010). As 
compared with non-photographic methods, the computer 
image-based photographic methods are convenient in 
terms of data acquisition, and advanced digital image 
analysis techniques can be used for computing the 
canopy density to achieve a higher accuracy. Based on 
the type of lens being used, the photogrammetric methods 
can be divided into conventional and hemispherical 
photogrammetric methods. The lens used in the 
conventional photogrammetric methods is aberration-free. 
On the other hand, in the hemispheric photogrammetric 
methods, 180° fisheye lens is used (Yamada et al., 
2017; Smith and Ramsay, 2018). The images captured 
by the hemispheric photogrammetric method contain a 
wider range of environmental information. The canopy 
density measured with hemispheric photogrammetric 
method may be influenced by the shrubs (Smith and 
Ramsay, 2018). Based on the direction of photo shoot, the 
photogrammetric methods can be divided into top-down 
and bottom-up photogrammetric methods. The top-down 
photogrammetric methods use drones or remote sensing 
technology to acquire image data from above, whereas the 
bottom-up photogrammetric methods use digital cameras 
for acquiring image data from the surface (Chianucci et al., 
2018; Bera et al., 2020; Chen et al., 2022). Considering 
that the Chinese alligator is a reptile and its visual range is 

closer to the bottom-up image shoot direction, the bottom-
up photogrammetric method is used commonly to measure 
the canopy density of the habitats of Chinese alligator 
(Yang et al., 2017; Wang et al., 2021a, b).

Due to its convenience, the photogrammetric method 
for canopy density measuring is widely used. The threshold 
segmentation method based on manual threshold selection 
is generally used to segment the canopy density images. 
This method can be used in image editing software, such 
as Adobe Photoshop, ImageJ, and GIMP (GNU Image 
Manipulation Program) (Stewart et al., 2007; Campillo et 
al., 2008; Smith and Ramsay, 2018). However, this method 
is time-consuming and laborious. In addition, it is greatly 
influenced by human subjectivity. In the study of Chinese 
alligator habitat, the canopy density image is usually 
segmented by an automatic pixel clustering method in Arc 
view GIS (Sun et al., 2005). However, the accuracy of this 
method is lower than the threshold segmentation method. 

Automatic threshold segmentation is a common 
method used for image segmentation. This method is 
simple, has low computational complexity and is easily 
deployable. However, when the automatic threshold 
segmentation method is used for canopy density 
measurement, the automatic threshold selection becomes 
a key step, which directly affects the measurement 
results (Guo et al., 2015; Song et al., 2016). Currently, 
the well-known image threshold segmentation methods 
include the fixed threshold method, the bimodal method, 
the iterative method, and the Otsu’s method (maximum 
interclass variance method) (Xu et al., 2011; Wang et al., 
2017; Sharma, 2021). The fixed threshold method and the 
normal bimodal methods select the thresholds manually, 
and are unable to segment the images automatically. On 
the other hand, the iterative method and Otsu’s method 
automatically search the best threshold value based on the 
variation relationship between the gray values of image 
pixels. However, since color of the sky and the vegetation 
in image varies with light intensity, cloud thickness, 
and vegetation type change, the segmentation threshold 
obtained using the iterative and Otsu’s methods generally 
deviate from the optimal segmentation thresholds, leading 
to biased results in the measurement of canopy density. To 
the best of our knowledge, no reliable automatic threshold 
segmentation method has been reported for canopy density 
measurement based on photogrammetric method.

In this work, an adaptive bimodal threshold 
segmentation method is established for the 
photogrammetric method of canopy density measurement. 
The accuracy of the proposed method is compared with 
the accuracies of iterative method and Otsu’s method. 
Then, the adaptability of the proposed method in different 
weather conditions and images containing different canopy 
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density levels is evaluated.

MATERIALS AND METHODS

Experimental materials
The images of canopy density are acquired in three 

protected areas, including Gaojingmiao Forestry Farm 
(119°17’E, 31°04’N), Wuhu Alligator Farm (118°43’E, 
31°30’N), and Xuan Cheng Alligator Breeding Center 
(118°78’E, 30°90’N) in Anhui Province, China. Each 
image is captured from bottom to the top by digital cameras 
in BMP format. The resolution of each image is 3880 × 
5184 pixels. The vegetation in these images includes trees, 
shrubs, and bamboos. In this experiment, 804 images of 
canopy density in the habitat of Chinese alligator are used 
to perform analysis. Among these images, 247 images are 
captured on cloudy days (without direct sunlight), 557 
images are acquired on sunny days (with direct sunlight), 
51 images are acquired in the environment of lower 
canopy density (0, 0.3), 246 images are acquired in the 
environment of medium canopy density (0.3, 0.7), and 507 
images are acquired in the environment of high canopy 
density (0.7, 1). 

Image segmentation and canopy density calculation
As shown in Figure 2a, image of canopy density 

contains sky area and vegetation area. Accurately 
segmenting the sky region is the key step in canopy 
density calculation by photogrammetric methods. The 
segmentation method selects a threshold T and transforms 
the gray image into binary image based on (1), where the 
white area denotes the sky area (pixel value is 1) and the 
black area denotes the vegetation area (pixel value is 0), as 
shown in Figure 2b. The ratio between the vegetation area 
and the total area of the image is calculated as the canopy 
density based on (2).

Where, x and y represent the horizontal and vertical 
coordinates of the image, respectively, f(x, y) represents 
the pixel value of the point (x, y), and T represents the 
segmentation threshold.

where, CD represents the canopy density, S1 represents 
the number of pixels with value 0, and S represents the 
number of all pixels. 

Fig. 2. Image for canopy degree detection.

The segmentation threshold T determines the size of 
the sky region segmented from the canopy density image 
and affects the accuracy of the canopy density calculation. 
Therefore, the correct threshold T is the key to obtain 
accurate canopy density.

Manual threshold selection method
At present, the manual methods of segmentation 

threshold selection are widely used in segmentation of 
canopy density image. This method selects the appropriate 
segmentation threshold based on human vision. 
Afterwards, it uses the threshold to segment the image for 
obtaining the binary image. Finally, it used (2) to calculate 
the canopy density.

The method of manual segmentation threshold is 
selected as follows. Adobe Photoshop 2021 software 
(Adobe Inc., USA) is used to read and process the 
canopy density image. The threshold tool is used to 
display the histogram of the B component of the image, 
and the threshold slider is manually dragged to adjust 
the segmentation threshold for appropriately segmented 
image. Thus, the optimal segmentation threshold is 
selected.

Otsu’s method
The Otsu’s method, also named as maximum 

interclass variance method, is an adaptive threshold 
selection method. The steps of this method are: (1) divide 
the gray value of the image into target area and background 
area repeatedly by using the segmentation threshold of 1 
to 255; (2) calculate the inter class variance between the 
target and the background areas of each segmentation as 
the judgment basis; (3) select the segmentation threshold 
with the largest interclass variance as the threshold T. 

The method for calculating the total average gray 
level of the image is presented in (3), and the method for 
calculating the interclass variance is presented in (4).

where, δ0 is the proportion of target pixels in the total im-
age pixels, μ0 is the average gray level, δ1 is the proportion 
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of background pixels in the total image pixels, μ1 is the 
average gray level, μ is the total average gray level of the 
image, and f denotes the interclass variance.

Iterative threshold segmentation method
The iterative method updates the threshold for 

obtaining its appropriate value by minimizing the 
within-cluster variance. The steps of iterative threshold 
segmentation method are presented below: 

(1) Set the initial threshold T0 as the average of the 
maximum and minimum gray values of the image, and set 
the iteration accuracy δ to 0.001.

(2) According to the threshold T0, the image is 
divided into the target area and the background area. Then, 
the average gray value μ0(0) of target area and the average 
gray value μ1(0) of the background area are calculated.

(3) Calculate the new threshold T1 using (5) and use 
the threshold T1 as the new initial threshold for the next 
iteration.

(4) The process continues until |T(k+1)- T(k) | < δ, where 
T(k) is the threshold calculated in kth iterative loop, T(k+1) is 
the threshold calculated in (k+1)th iterative loop, and δ is 
the iteration accuracy.

Automatic bimodal threshold segmentation method
If there is an obvious target area in the image, the gray 

histogram shows a bimodal shape, and the segmentation 
threshold generally appears in the position of the troughs. 
The bimodal method determines the segmentation threshold 
by searching the trough of the histogram, and selects 
the lowest gray value of the trough as the segmentation 
threshold. Figure 3 shows the gray histogram of the canopy 
density image. It is evident that there is an obvious trough 
in the histogram. However, the positions and quantities of 
peaks and troughs in each figure are different.

Fig. 3. Gray histogram of three canopy density images.

At present, the bimodal method is achieved by 
manually searching the trough threshold. In this paper, a 
histogram traversal method is established to automatically 
search the peak and trough positions for determining the 
best threshold. The proposed algorithm is as follows:

(1) Calculate the image gray histogram (Fig. 4a) by 
median filtering with a window width of 10 from 256 
levels to 32 levels (Fig. 4b) for removing the miscellaneous 
peaks from the histogram (Fig. 4c).

(2) Traverse the gray value G = 0 till the end of the 
histogram and count F(g) as the number of pixels with 
gray value equal to g. A peak position is found when F(g 
+1) < F(g). Record the peak position as g +1. The starting 
point of the first peak is recorded as 0.

(3) Traverse from the gray value g+1 to the end of 
the histogram. The end point of this peak is obtained when 
F(g+1) > F(g) and the end point is recorded as g. g+1 is 
recorded as the starting point of the next peak.

(4) Repeat steps 2 and 3 to traverse the 64 levels of 
histogram for obtaining the position of all peaks in the 
histogram. Convert the position of the peaks into 256-level 
gray values. The gray value of the positions of the first two 
peaks is recorded as P1 and P2. P1 is the position of the 
peak of background and P2 is the peak of the target.

(5) When P1 and P2 of the first two peaks are obtained, 
the best threshold must be between the positions of the 
two peaks. However, the distance between the two peak 
positions in the histogram is generally longer than 100 gray 
levels and the lowest gray value between the two peaks 
may not be the best segmentation threshold. Therefore, the 
optimal threshold T is calculated by using (6).

where, t is the threshold position parameter. The value 
of t is determined by experiments.

Fig. 4. Histogram process for noise peak elimination.

Grayscale conversion of canopy density image
The color canopy density image is composed of three 

color components: red, green, and blue. Among these 
three components, the grayscale difference between the 
sky and vegetation-covered area is the largest in the blue 
component. So, the blue component of the image is taken 
as the gray image for threshold segmentation.

Accuracy evaluation of automatic image segmentation 
methods for canopy density calculation

The canopy density value calculated by the manual 
threshold selection method is used as the standard value. 
The canopy density value calculated by other automatic 
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image segmentation methods is compared with the standard 
value. The average error, determination coefficient (R2), 
root mean square error (RMSE), and the slope of linear 
regression model of the canopy density is calculated by 
using three automatic segmentation methods to evaluate 
the accuracy and practicability of these methods.

Determination of optimal threshold position parameter t 
The optimal threshold position parameters t is 

respectively taken as 1/4, 1/3, 1/2, 2/3, 3/4, and the lowest 
gray value of the trough. The automatic bimodal threshold 
segmentation method is used to segment all the canopy 
density image samples with each t and the canopy density 
is calculated. The accuracy of canopy density measured 
by the automatic bimodal threshold segmentation method 
with different values of t is calculated. The value of t 
corresponding to the highest accuracy is selected as the 
optimal threshold position parameter.

Accuracy comparison of the self-adaptive bimodal 
threshold segmentation methods for canopy density 
measurement in different conditions

The practicability of self-adaptive bimodal threshold 
segmentation methods in different conditions is evaluated 
by using the images captured during cloudy days, sunny 
days, and the images with different canopy densities. 

(1) The canopy density of 247 images captured on 
cloudy days and 557 images captured on sunny days 
is measured by using self-adaptive bimodal threshold 
segmentation methods, and the accuracy of the 
measurements is calculated and compared. 

(2) The canopy density of 51 images with low canopy 
density [0-0.3), 246 images with medium canopy density 
[0.3-0.7), and 804 images with high canopy density 
[ 0.7-1) is measured by using self-adaptive bimodal 
threshold segmentation methods. The absolute error of the 
measurements is calculated and compared using (7).

where, ε is absolute error, xi is the canopy density meas-
ured by automatic threshold segmentation method, ai is the 
canopy density measured by manual threshold selection 
method, and i is the serial number of images.

RESULTS AND DISCUSSION

Determination of the optimal threshold position parameter t
As shown in Figure 5, when the optimal threshold 

position parameter is 2/3 (0.667), the absolute error of 
canopy density measured by the self-adaptive bimodal 
threshold segmentation method is smallest, i.e., 0.018 ± 
0.016. This value is less than that of using lowest gray value 

of the trough as the segmentation threshold. Therefore, 
in this paper, the optimal threshold position parameter is 
set to 0.667, when the self-adaptive bimodal threshold 
segmentation method is used for subsequent experiments.

The canopy images in this study are captured with a 
bottom-up direction. The trough between the two peaks in 
the gray histogram of the image is long and smooth. As a 
result, there is no obvious lowest point between the two 
peaks. Considering the lowest point as the segmentation 
threshold directly cannot be used to segment a clear 
vegetation profile. However, the segmentation threshold 
for the images captured from up-bottom direction is at the 
lowest point between two peaks in gray histogram as the 
two peaks are much closer (Coy et al., 2016).

Fig. 5. Absolute error of canopy density calculating using 
self-adaptive bimodal threshold segmentation method with 
different best threshold position parameter.

Accuracy of different automatic threshold segmentation 
methods

As presented in Figure 6, the determination coefficient 
(R2) of canopy density measurements obtained by using the 
self-adaptive bimodal threshold segmentation method, the 
Otsu’s method, and the iterative method are 0.9874, 0.9561, 
and 0.7073, respectively. Among these three methods, the 
slope of linear regression model obtained using the self-
adaptive bimodal threshold segmentation method is the 
closest to 1, and R2 is the largest. As shown in Table I, 
the absolute error, maximum absolute error, and RMSE of 
the self-adaptive bimodal threshold segmentation method 
are the smallest and the average absolute error of self-
adaptive bimodal threshold segmentation method is 0.018. 
It is evident that the measuring accuracy of self-adaptive 
bimodal threshold segmentation method is better than 
the other two methods. As compared with the measuring 
method based on ArcView GIS, which is widely used in 
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the study of Chinese alligator habitat (Sun et al., 2005), 
this self-adaptive bimodal threshold segmentation method 
has higher measurement accuracy and can improve the 
measurement speed by using batch processing.

Fig. 6. Measuring accuracy of different automatic threshold 
segmenting methods.

Table I. Absolute error and RMSE of different 
automatic threshold segmenting methods.

Self-adaptive bi-
modal threshold 
segmentation 
method

The Otsu 
method

Iterative 
threshold 
segmentation 
method

Absolute error 0.018±0.016 0.038±0.034 0.066±0.134
Maximum 
absolute error

0.086 0.445 0.466

RMSE 0.024 0.051 0.085

Influence of different weather on the measuring accuracy 
of self-adaptive bimodal threshold segmentation method

The weather conditions significantly influence the 
segmentation of canopy density image (Lang et al., 2010). 
As shown in Figure 7 and Table II, R2, RMSE, absolute 
error, and maximum absolute error of self-adaptive 
bimodal threshold segmentation method for the images 
captured on cloudy days are 0.9907, 0.019, 0.014 ± 0.012, 
and 0.062, respectively. The measurement accuracy of 
this method for the images captured on cloudy days is 
higher than that for the images captured on sunny days, 
which indicates that the self-adaptive bimodal threshold 
segmentation method is more suitable for canopy density 
images captured on cloudy days. This may be because that 
on sunny days, when an image is captured, the brightness 
of a certain area is higher as compared to other areas due 
to direct sunlight. This causes interference in the search 
for the optimal threshold of the self-adaptive bimodal 
threshold segmentation algorithm. 

Effect of different canopy density range on accuracy of 
self-adaptive bimodal threshold segmentation method

As shown in Figure 8 and Table III, the determination 
coefficient (R2) of the self-adaptive bimodal threshold 
segmentation method is the largest (0.9947), followed by 

the middle canopy density image (0.9541), and the high 
canopy density image (0.8179). In terms of absolute error, 
the maximum absolute error and RMSE of the low canopy 
density images are smallest, while high canopy density 
images have the largest value.

Fig. 7. Segmentation result of self-adaptive bimodal 
threshold segmentation method for images taken on the 
cloudy day and the sunny day.

Fig. 8. Segmentation result of self-adaptive bimodal 
threshold segmentation method for images taken from the 
place with different canopy density.

Table II. Absolute error and RMSE of self-adaptive 
bimodal threshold segmentation method for images 
taken on the cloudy day and the sunny day.

Cloudy days Sunny days
Absolute error 0.014±0.012 0.020±0.017
Maximum absolute error 0.062 0.086
RMSE 0.019 0.026

Table III. Absolute error and RMSE of self-adaptive 
bimodal threshold segmentation method for images 
taken from the place with different canopy density.

Low canopy 
density

Medium 
canopy 
density

High canopy 
density

Absolute error 0.006±0.004 0.017±0.016 0.020±0.016
Maximum 
absolute error

0.038 0.086 0.08

RMSE 0.009 0.023 0.025
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It is evident that the self-adaptive bimodal threshold 
segmentation method is suitable for images with low and 
medium density canopies. When the canopy density is 
high, the sky area in the image is small and cluttered, and 
the contours of the leaves are blurred. These factors greatly 
cause light diffraction, thus causing difficulty in finding 
a definite and standard segmentation threshold even in 
manual methods. In other cases, the sky area is small and 
partial with a relative long outline. So, the segmented area 
is easily affected by the change in segmentation threshold. 
As compared with hemispheric image segmentation 
method based on edge detection (Nobis and Hunzikar, 
2005), the adaptive dual-mode threshold segmentation 
method achieves better segmentation accuracy for low 
canopy density images and is more suitable for images 
with medium and low canopy densities.

The average absolute error of the self-adaptive 
bimodal threshold segmentation method based on images 
with high canopy density proposed in this paper is about 
0.02. This method satisfies the accuracy requirements of 
canopy density measurement in Chinese alligator habitat 
research as the canopy density of Chinese alligator habitat 
has a relatively wide range.

CONCLUSIONS

In this paper, a self-adaptive bimodal threshold 
segmentation method is established for the automatic 
measurement of canopy density. The optimal threshold 
position parameter of this method is optimized and set 
to 0.67. The accuracy (absolute error 0.018±0.016) of 
the proposed method is higher than that of the Otsu’s 
method and the iteration method. The accuracy (absolute 
error 0.014±0.012) of canopy density images captured on 
cloudy days is higher than the images captured on sunny 
days (absolute error 0.020±0.017). The accuracy of images 
with low canopy density (canopy density 0-0.3) is highest 
(absolute error 0.006±0.004). The accuracy of images 
with high canopy density (canopy density 0.7-1) is lowest 
(absolute error 0.020±0.016). The self-adaptive bimodal 
threshold segmentation method satisfies the accuracy 
requirements of canopy density measurement in Chinese 
alligator habitat research.
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