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Thais clavigera (T. clavigera) is an ecologically and economically important gastropod species in the 
coastal regions of China. Compared to other molluscs, T. clavigera has a long planktonic larval period 
(i.e., ~ two months). In order to identify the relevant factors affecting the genetic structure of T. clavigera, a 
total of 147 T. clavigera individuals distributed along the Chinese coast from 9 populations were analysed 
genetically on the bases of cytochrome oxidase I (COI) gene. Analysis of the COI genetics indicated a 
high level of genetic diversity among T. clavigera. Our analysis of population genetic and demographic 
(AMOVA, haplotype networks and mismatch distribution) revealed a single genealogical branch and 
indicated undifferentiation of T. clavigera in the China Sea. Migration dynamic analysis showed that gene 
flow was asymmetrical and QD as the source population. Additional, canonical correspondence analysis 
(CCA) analysis between environmental factors (SKT, TOP, SLP, and SUND) and haplotypes indicated 
that SLP and SUND carried highest influence on the haplotype distribution. SKT and total precipitation 
TOP were highly correlated with haplotype formation. Combine life story of T. clavigera revealed that 
environmental factors contribute to the nuances of population genetic in different regions. Understanding 
the genetic variation and population structure of T. clavigera populations along the coast of China Sea 
obtained from this study will support the aquaculture management and conservation of T. clavigera in 
China.

INTRODUCTION

C ompared to freshwater organisms, differentiation 
and speciation of marine organisms is limited. In the 

marine environment, genetic structure of marine species is 
affected by multiple and complex factors such as dynamic 
oceanographic features, larval behaviour, spawning period 
and post-settlement mortality (Lambeck et al., 2002; 
Wares, 2002; Liu et al., 2007; Xu et al., 2009; Shen et al., 
2011; Liu et al., 2012a; Guo et al., 2015; Mcveigh et al., 
2017). Most marine organisms exhibit a planktonic stage 
and during this stage, these organisms disperse several
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meters to a long distance from their original location (He 
et al., 2019; Hou et al.,2020). Owing to the small size and 
weak swimming capabilities of most marine larva, the 
dispersal potential is primarily determined by the length 
of their pleagic stage (Scheltema, 1971; Grantham et al., 
2003; Weersing and Toonan, 2007; Koga et al., 2016). 
Population genetic structure of marine organisms carrying 
a long planktonic larval stage can result in increased gene 
flow, and consequently decreased levels of population 
differentiation (Selkoe et al., 2011; Ye et al., 2015). Taylor 
and Hellberg (2003) upon exploring the relationship 
between planktonic period and population differentiation, 
it has been revealed that a significant genetic differentiation 
occurs in fishes of 21 days of their planktonic age. The 
planktonic period of some marine fishes impose a great 
influence on the genetic differentiation of their populations. 
In this regard, eight species of reef fishes were analysed 
by mtDNA RFLP by Shulman and Bermingham (1995). 
They have found one out of eight species has a significant 
genetic structure with shorter planktonic periods. Siegel et 
al. (2003) have discovered that the mean absolute dispersal 
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distance (estimated using a population-genetic modelling 
approach) show a strong relevance with the length of the 
pelagic larval phase (Siegel et al., 2003). However, others 
have reported that population genetic exceptions which 
have decreased subdivision in species with long length 
of the planktonic larval stage (Todd, 1998; Taylor et al., 
2003; Rocha et al., 2005; Baums et al., 2006; Bowen et al., 
2006). Therefore, these complex relationships between the 
gene flow and the pleagic larval stage need to be studied 
further in greater details (Galarza et al., 2009). 

Environmental variables are key factors for survival 
of marine organisms with a complex life cycle, influencing 
larval stages and therefore, indirectly affecting later 
benthic stages (Seguel et al., 2019; Bueno et al., 2021). A 
typical example is the effect of gene exchanging between 
populations to varying degrees caused by rivers dilute 
water. Zhao and colleagues have studied the Cyclina 
sinensis population genetic structure, and concluded that 
the dilute water of the Yangtze River may be a barrier 
to the gene exchange of species in the area (Zhao et al., 
2007). Similar results were show in gastropod Cellana 
toreuma by Su et al. (2005), in bivalve Cyclina sinensis by 
Zhao et al. (2009), and in two varieties from Sargassum 
by Cheang et al. (2010). This universal phenomenon 
was attributed to the salinity effects on embryos and 
larval development. Temperature is also one of the most 
important environmental factors, especially in the coast of 
China in the temperate zone, which exhibit a significant 
temperature fluctuation (warm waters in summer and cold 
waters in winter) (Pörtner and Gutt, 2016). Thus, pelagic 
larval stage of marine organisms is adapt to environmental 
changes which are not otherwise suitable for larval and 
embryo development (Seguel et al., 2019). Additional 
factors such as light intensity (Hogman, 1968; Higgins and 
Talbot, 1985; Swift, 1995; Sakai et al., 2020) and substrate 
(Walne, 1965) are not yet investigated for their impact 
on the population genetic structure and such studies are 
required to better study the formation of genetic structure 
of marine species. 

The Thais clavigera (T. clavigera), a member of 
family Muricidae, is living in the middle and lower tidal 
areas of the intertidal zone. It is a eurythmic benthic species 
commonly found in the coastal areas of China, Japan and 
Korea (Zhu et al., 2008; You et al., 2010). Similar to most 
of the marine species, T. clavigera carry a planktonic 
larval period which lasts only for two months (Ewers et 
al., 2019). During this stage, T. clavigera disperse over 
larger distances mediated through tides and ocean currents. 
Depending upon different life history, different species are 
influenced by different factors of genetic pattern. Guo et al. 
(2015) have proposed that the Yangtze River dilution water 
was a subtle factor to the T. clavigera genetic structure 
formation in the past coastal areas of China and Janpan 

sea. However, the Bohai sea area has not been included in 
their studies. The study conducted by Xu (1997) indicated 
that the boundary was not an insurmountable challenge 
for some bivalve shellfish which have broad temperature 
tolerance because they harbour the ability to cross this 
boundary and disperse widely.  

Cytochrome oxidase I (COI) gene possesses special 
characteristics which make it suitable as a molecular marker 
for evolutionary studies because it carries highly conserved 
and variable regions which provide useful insights into 
evolutionary studies (Cerutti et al., 2012; Fernando et al., 
2020). Based on these features, the mitochondrial COI 
gene of T. clavigera individuals (n=147) from 9 sites in 
coastal areas of China were collected, sequenced and 
characterized to assess population genetic structure of T. 
clavigera in China coastal area. The long planktonic larval 
stage, and environmental factors were used to investigate 
the population genetic pattern. Compared to other marine 
organisms with diffusion of ocean currents in the larval 
stage, it remains to be determined those factor that 
influence the formation of T. clavigera genetic structure. 
Additionally, it is also not known if environmental factors 
are related to the formation of genetic pattern or not? These 
studies highlight the importance of the molecular markers 
that guide the genetic patterns on marine species.

MATERIALS AND METHODS

Sampling and sequencing
A total of 147 individuals of T. clavigera were 

collected from 9 geographic locations in the coastal area 
of the China (Fig. 1). Whole organism samples were 
frozen and shipped to Zhejiang Ocean University. Muscle 
samples were obtained and preserved in 95% ethanol or 
frozen for subsequent DNA extraction. The genomic DNA 
was extracted followed salting-out method (Folmer et al., 
1994) from muscles, then stored at -20℃ refrigerator in 
the National Engineering Research Center for Marine 
Aquaculture, Zhejiang Ocean University until use.

The complete mitochondrial genome data of T. 
clavigera (NC_010090) were utilized for the COI 
sequencing search. Primer Premier v6.0 (Singh et al., 
1998) was used to design the COI primers (COI-F: 
5’-TTATGATAGAACAAGTAAACG-3’ and COI-R: 
5’-AGAATAGCATAAATCATAGGC-3’). Each 
polymerase chain reaction (PCR) was carried out in 25 µL 
volumes containing 0.5 µl of template DNA, 1 µl of each 
of the primer, 10 µl of dH2O, 12.5 µl San Taq Fast PCR 
Master Mix (with blue Dye) (Sangon Biotech, Shanghai, 
China). The amplification conditions were initial 
denaturation at 94°C for 3 min, the course of reaction 
was 35 cycles at 94°C for 30s, 52°C for 30s, 72°C for 1 
min, and final elongation at 72°C for 7 min. The products 
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were checked in the electrophoresis on 1% agarose gels. 
All of these products were sequenced in both directions 
by Sangon Biotech, Shanghai, China. All the obtained 
sequences were deposited in GenBank with accession 
numbers MW279153-MW279181.  

Fig. 1. Map showing the sampling locations along the 
coast of China.

Data analysis
The DNA sequences were examined and aligned 

using Bioedit and MEGA (Excoffier et al., 2010). 
Molecular diversity indices including the number of 
haplotype diversity (Hd), nucleotide diversity (p), and the 
mean number of pairwise differences (k) were obtained 
using ARLEQUIN v2.0 (Librado and Rozas, 2009) and 
DnaSP (Excoffier et al., 1992). The historical demographic 
patterns of T. clavigera were examined by Tajima’s D, Fu’s 
Fs, which were used to test neutrality (Fu, 1997; Bandelt et 
al., 1999). Significant negative statistics were interpreted 
as signatures of population expansion. The significance 
levels of Tajima’s D and Fu’s Fs were evaluated under 
10,000 permutations, and both mismatch analysis and 
neutrality tests were performed in ARLEQUIN. 

Population genetic structure was evaluated with FST 
statistics, and analysis of molecular variation (Tamura 
and Nei, 1993) was performed by ARLEQUIN. Genetic 
distances between haplotypes were determined using the 
model of Tamura and Nei (Tajima, 1989). The significance 
of the F

ST was tested by 10,000 permutations and was 
calculated the gene flow (Nm) by ARLEQUIN. Population 
structure of T. clavigera was further investigated using 
the molecular variance software package in ARLEQUIN. 
Network 5.0 (Sundqvist et al., 2016) software constructed 
haplotype Network diagram to analyze the corresponding 
relationship between each haplotype and the group. The 
web-based software divMigrate-online (Nei, 1973) was 
used to infer the directional relative migration patterns 
using the FST statistic (Ting et al., 2018) as a measure of 

genetic differentiation. Implementation approaches in 
divMigrate-online is based on supposing a hypothetical 
pool of migrants for a pair of given populations and 
estimating a properly measure of genetic differentiation 
between each of the two populations. Directed genetic 
differentiation was used to evaluate the relative level 
of migration between two populations. Larger relative 
migrations values indicate that the population is most 
likely the source population, whereas the smaller of the 
two values indicate the population is most likely to be the 
sink populations (Sheik et al., 2012; Ting et al., 2018). 

Total precipitation (TOP), mean sea level pressure 
(SLP), sunshine duration (SUND), mean air temperature 
(SKT) and data from the European Meteorological 
Center (ECMWF)-ERA Interim (https://apps.ecmwf.
int/datasets/data/interim-full-mnth/levtype=sfc/), were 
selected, downloaded and the average value over the 
past 20 years was calculated. The correlation between 
haplotype, population and environmental factors of COI 
in nine populations was analysed. The Canoco5 was used 
to carry out canonical correspondence analysis (CCA) of 
the acquired environmental factors and hadic data (Ter et 
al., 2012). 

RESULTS

Genetic diversity of T. clavigera
A total of 147 COI sequences from 9 populations were 

examined in the coastal of China. In the analysed data a 
total of 17 variation sites and 29 haplotypes were obtained 
(Fig. 1). The Hd ranged from 0.37778 to 0.85833, the 
nucleotide diversity (Pi) ranged from 0.00100 to 0.00323, 
and the average number of nucleotide differences (K) 
ranged from 0.69118 to 2.22500. The haplotype diversity 
(Hd), nucleotide diversity (Pi) and nucleotide difference 
(K) of PL population were the highest, and those of XM 
were the lowest. The estimated mean Hd was 0.69826, Pi 
was 0.00182, and K was 1.25263 (Table I). These results 
reveal that the genetic diversity of XM population is the 
lowest among the 9 populations, and PL population is the 
highest. 

Population genetic structure
The results indicated a 99.43% of the genetic variation 

within populations, whereas 0.57% of the variation were 
found between populations (Table II). These finding 
highlight that COI gene was less differentiated between 
populations and the level of genetic differentiation between 
populations is low. The pairwise FST values between nine 
populations ranged from -0.03102 to 0.06702 (Table 
III). Most of which were non-significant and indicate 
undifferentiation of T. clavigera. However, statistically 
highly significant variations were found among FCG and 
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Table I. Sampling information of T. clavigera including sample name, sample size, sample abbreviate (ID) and data 
of collection. Several diversity indices were also indicated. H, haplotypes numbers; s, mutation sites; Hd, haplotype 
diversity; Pi, nucleotide diversity; K, average number of pairwise divergences.

Population Latitude, longitude Size h s Hd Pi K

Jinzhou JZ 40°67′N, 121°40′E 19 9 9 0.81287 0.00202 1.39181

Dalian DL 38°88′N, 121°70′E 20 7 8 0.58421 0.00155 1.06842

Penglai PL 37°78′N, 120°81′E 16 9 12 0.85833 0.00323 2.22500

Qingdao QD 35°01′N, 119°01′E 17 5 5 0.50735 0.00100 0.69118

Zhoushan ZS 29°01′N, 122°01′E 20 10 8 0.75789 0.00168 1.15789

Xiapu XP 27°01′N, 120°81′E 15 9 10 0.84762 0.00241 1.65714

Fuzhou FZ 26°01′N, 119°71′E 10 6 7 0.77778 0.00203 1.40000

Xiamen XM 24°01′N, 118°01′E 10 3 3 0.37778 0.00110 0.75556

Fangchenggang FCG 21°68′N, 108°43′E 20 7 6 0.63684 0.00135 0.92632

Total Data Estimates 147 29 17 0.69826 0.00182 1.25263

Table II. AMOVA analysis of 9 T. clavigera population.

Source of 
variation

d.f. Sum of 
squares

Variance 
components

Percentage 
of variation

COI Among 
populations

8 5.449 0.00357 Va 0.57

Within 
populations

138 85.993 0.62314 Vb 99.43

Total 146 91.442 0.62671

Fig. 2. Directional relative migration networks of T. 
clavigera populations constructed with divMigrate using 
FST Values above 0.25 (a) and 0.35 (b) are shown.

two populations (DL and PL). Migration dynamic analysis 
showed that the gene flow was asymmetrical from QD to 
DL and PL, and was stronger than that from QD to ZS, XP 
and XM (Fig. 2). In addition, gene flow between JZ and FZ 
was weak. The results of this migration pattern showed a 
higher level of gene exchange between QD population and 

others. Haplotype analysis based on COI gene showed a 
total of 29 haplotypes in 9 geographical populations. Similar 
interpretation were also made from haplotype Network (Fig. 
3) and Bayes tree (Fig. 4) analysis.

Fig. 3. Networks of T. clavigera developed using COI data. 
Color representation is showing the population frequency. 
Numbers are representing the haplotype numbers. 

Demographic analysis
The topology of the Bayes tree of T. clavigera 

was shallow and there were no significant genealogical 
branches or clusters of samples corresponding to sampling 
locations. A dominant haplotype H2 was found in all 
populations. The JZ, DL, QD, ZS, and XP, contributed to 
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Table III. FST and Nm of T. clavigera based on COI gene.

FST JZ DL PL QD ZS XP FZ XM FCG

JZ 0 Inf 252.27 Inf 32.862 Inf Inf 7.9709 4.6024

DL -0.01809 0 Inf Inf 40.6665 Inf Inf 24.4048 6.6256
PL 0.00099 -0.00112 0 18.7758 26.4024 Inf Inf 69.5824 3.4802
QD -0.00329 -0.00899 0.01314 0 Inf Inf Inf 9.3065 6.5269
ZS 0.00755 0.00611 0.00938 -0.00332 0 Inf Inf 7.8249 Inf
XP -0.03102 -0.0059 -0.00246 -0.02612 -0.00237 0 Inf 10.4155 6.456
FZ -0.01604 -0.00481 -0.01516 -0.02661 -0.04453 -0.03989 0 Inf Inf
XM 0.03041 0.01014 0.00358 0.02616 0.03096 0.02344 -0.01677 0 4.8803
FCG 0.05152 0.03636 0.06702 0.03689 -0.01175 0.03728 -0.0102 0.04873 0

Table IV. Based on the sequences of COI, the neutral test was conducted for the 9 populations of T. clavigera.

COI Statistics JZ DL PL QD ZS XP FZ XM FCG Mean s.d.
Sample size 19 20 16 17 20 15 10 10 20 16.3333 4.031

Taji-
ma's 
D test

S 9 8 12 5 8 10 7 3 6 7.5556 2.69774
Pi 1.39181 1.06842 2.22500 0.69118 1.15789 1.65714 1.40000 0.75556 0.92632 1.25259 0.48243
Tajima's D -1.60306 -1.77344 -1.46972 -1.71874 -1.63971 -1.75529 -1.83913 -1.03446 -1.44134 -1.58610 0.24681
Tajima's D 
p-value

0.03830 0.02190 0.06090 0.02110 0.03030 0.02650 0.01270 0.21600 0.06030 0.05422 0.06296

No. of 
alleles

9 7 9 5 10 9 6 3  7 7.2222 2.27913

Theta_pi 1.39181 1.06842 2.22500 0.69118 1.15789 1.65714 1.40000 0.75556 0.92632 1.25259 0.48243
Fu's 
FS 
test

Exp. no. 
of alleles

4.25926 3.73288  5.15442 2.82679 3.90436 4.32272 3.43070 2.56892 3.44806 3.73868 0.79239

FS -5.17399 -3.29864 -3.72262 -2.30804 -7.69624 -5.36891 -2.82716 -0.04647 -3.84083 -3.80921 2.15202
FS p-value 0.00030 0.00650 0.00950  0.01140 0.00000 0.00020 0.00850 0.39950 0.00120 0.04857 0.13168

Fig. 4. Bayes haplotype evolutionary tree based on COI 
gene.

Hap4, JZ, ZS, XP, FZ, and FCG five groups contributed 
to Hap9. A dominant haplotype H2 was found in all the 
populations, and total 80 individuals of Hap2 indicated the 
ancestor haplotype covering all groups. Hap1, 5, 16, 19 
and 28 were obtained in populations from JZ, DL, PL, XP, 
QD and ZS. Based on the above results, it is plausible that 
there is no obvious pattern in the distribution of haplotype, 
indicated a high level of gene flow of T. clavigera in the 
coastal areas of China. The Tajima’s D rejected neutrality 
(P < 0.05) for all populations expected PL, XM, FCG 
populations (Table IV). Fu’s Fs statistic analysis indicated 
a significantly different pattern from zero (P < 0.05) for all 
populations expect JZ and ZS. At the same time, mismatch 
distributions for T. clavigera were unimodal, and closely 
matching the expected distributions under the sudden 
expansion modal (Fig. 5). 
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Fig. 5. Mismatch histogram-line composite graph based on 
COI gene.

Fig. 6. The canonical correspondence analysis (CCA) on the 
relationship between environmental factors and haplotypes 
of T. clavigera. The longer arrow of environmental factors 
indicates a greater degree of influence, and closer indicate 
a stronger correlation.

Environmental factors
Canonical correspondence analysis (CCA) was 

performed between environmental factors and haplotypes 
(Addison et al., 2004). In CCA analysis, the longer arrow 

of environmental factors indicated a greater degree of 
influence, and if the haplotype is closer to environmental 
factors, the correlation is stronger. The formation of acute 
angle indicated a positive correlation while the obtuse 
angle indicated a negative correlation. The same acute 
angle between different environmental factors indicated a 
positive correlation and negative correlation conversely. 
The outcome of CCA analysis based on COI gene (Fig. 6) 
showed that SLP and SUND carried substantial influence 
on haplotype distribution where SKT and TOP were 
more correlated with haplotype formation. Among the 
environmental factors, the correlation between average 
temperature and total precipitation is the strongest, which 
is positively correlated with average sea level pressure 
and negatively correlated with sunshine duration. The 
distribution of Hap1, Hap2, Hap9, and Hap21-28 was 
highly correlated with mean air temperature and total 
precipitation. In Hap 10-20, except for Hap15 and Hap19, 
other haplotypes were highly correlated with mean sea level 
pressure and surface net solar radiation, and the duration 
of sunshine has a greater influence on haplotypes. Other 
haplotypes carried weaker correlation with environmental 
factors. Among the haplotypes that are highly correlated 
with average air temperature and total precipitation, 
the haplotypes of ZS, XP, FZ and FCG occupied a large 
proportion, while those of DL, PL, ZS and QD occupied a 
large proportion, which were highly correlated with mean 
sea level pressure and surface net solar radiation. 

DISCUSSION

As common gastropod species in Chinese coastal 
areas, the T. clavigera is highly popular due to its rich 
nutrition and delicious taste (Ter et al., 2012). These features 
underline the rational for a sharp decrease in the resources 
for T. clavigera. In this study, we assess population genetic 
structure of T. clavigera in the coastal of China based on 
mitochondrial COI gene sequence and provided foundations 
on the role of environmental factors on the current genetic 
distribution of T. clavigera populations. 

Compared to terrestrial species, marine organisms are 
generally considered to have low genetic diversity, as they 
have a higher potential for transmission at the plankton, 
larval or adult stage of history, and there are not many 
physical barriers to movement (Liu et al., 2012b). The 
length of the planktonic larval stage is a plastic life-history 
trait that can vary by an order of magnitude or more for 
some species (Toonen and Pawlik, 2001; Addison and Hart, 
2004). Such variation in PLD can occur due to behaviours 
such as delayed metamorphosis (Pechenik, 1990) or larval 
responses to environmental stochasticity (Woodson and 
Mcmanus, 2007; Weersing and Toonen, 2007). These 
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studies appear to confirm the long-standing hypothesis that 
longer planktonic larval durations confer greater dispersal 
ability. Recent studies have established the existence of the 
planktonic phase of T. clavigera larvae to about two months 
(Tian et al., 2020). Considering the limited mobility of T. 
clavigera and a longer planktonic larval stage compared 
to other species, it is believed that the communication 
between the geographic populations of T. clavigera may 
mainly be through the migration caused by ocean currents 
in that long larval stage (Chandler et al., 2008). 

Through COI gene analysis, we were unable to detect 
significant genetic differentiation. Additionally, the COI 
gene-based haplotype network also showed no obvious 
genetic structure. Meanwhile, AMOVA analysis indicated 
that the major source of the genetic variation was variations 
within populations instead of between areas. This suggested 
that there were no significant genetic differences between 
different geographic populations. However, in this study, 
FST between FCG, JZ and PL was significant. Notably, 
not all populations of the South China Sea and East China 
Sea show obvious lineage formation, and the gene flow 
between FZ and XP populations revealed a high level, with 
the northern populations contrary to the above conclusion. 
This conclusion was similar to previous studies where 
Atrina pectinata, Coelomactya cmtiquata, Rapana venosa, 
Eriocheir sensu stricto (Xu and Oda, 1999; Chandler et 
al., 2008; Kong and Li, 2009; Liu et al., 2012) and other 
species showed no significant differentiation. Migration 
dynamic analysis showed an asymmetrical gene flow in 
the coast of China and indicated that QD as the source 
population. It is plausible that certain factors may slightly 
affect genetic differentiation of T. clavigera which are 
hidden below the appearance of frequent gene exchange. 
Therefore, to identify the influential factors, we choose the 
environment factors in this study. 

Combined with traditional population genetic 
methods and seascape genome research, it was identified 
that there are significant correlations between population 
genetic structure and environmental factors in many 
marine species (Bueno et al., 2012; Pespeni et al., 2013; 
Pires et al., 2015). Li et al. (2009) have studied the effects 
of environmental parameters on the immune capacity of 
Mytilus galloprovincialis and found that temperature had 
a positive effect on the expression of 28SrRNA, lysozyme 
and mussel embryo. Sarver and Bushak (1993) have found 
that the distribution of mussel population was closely 
related to temperature and salinity. A considerable emphasis 
has been given to environmental factors and their effects on 
the growth, development and reproduction of organisms, 
and as factors affecting the evolution of species (Schneider 
et al., 2010; Nardon et al., 2005). vis-à-vis T. clavigera, 
Tian et al. (2020) have studied its growth and development, 

and identified that larva of T. clavigera has metamorphosis 
after 10 d of sediment adhesion at 27 ~ 28°C, whereas the 
oviposition temperature was mainly concentrated at 22 ~ 
28°C. The average temperature in the southern East China 
Sea and South China Sea is around 25°C. Life history 
illustrates a  suitable living environment for T. clavigera 
planktonic larvae for its transformation into a juvenile snail 
after 10 days of attachment to the bottom at 27~28°C. In this 
study, haplotypes in the lower latitude locations (southern 
East China Sea, South China Sea) are more affected by 
temperature. Therefore, we argued that the formation of 
specific haplotype in the southeast sea population may be 
attributed to the influence of temperature. Temperature 
fluctuations significantly affect multiple aspects include 
timing of metamorphosis, enzyme activity, immune 
function indirectly affects the life history and distribution 
pattern of T. clavigera. Compared to the whole coastal 
area of China, the South China Sea with higher average 
temperature carried more advantages in the development 
of the bottom of T. clavigera. A similar conclusion was 
drawn in Babylonia areolata and Polinices pulchellus 
(Kingsley et al., 2005; Huang et al. 2010). In addition to 
temperature, climate is one of the most important factors 
limiting species distribution. Chen has found that the ability 
of rainfall to affect shellfish is higher, and the ability of 
microbial enrichment is stronger with higher precipitation 
(Chen, 2019). Wang et al. (2015) have found that nutrient 
concentration is one of the main factors affecting the spatial 
and temporal distribution of shellfish, and precipitation can 
effectively alleviate the silicate limit in the sea area, and 
precipitation can directly affect the air humidity and water 
vapor pressures. Based on the positive correlation between 
precipitation and haplotype in this study, we believe that 
higher precipitation can alleviate the silicate limit in the sea 
area and provide a favourable environment for the growth 
and reproduction of T. clavigera larvae. 

CONCLUSION

We investigated population genetic structure of T. 
clavigera in the coast of China using mitochondrial COI 
gene and determined the environmental factors influencing 
the population genetic structure. We conclude that a long 
planktonic larval stage can make an extensive contribution 
to high level of gene flow in T. clavigera population. 
Additionally, environmental factors such as temperature 
and precipitation can slightly affect genetic differentiation 
in T. clavigera population. 
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