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Introduction

Chenopodium quinoa (Willd.) is cultivated mainly 
for its edible grains, is considered as one of the 

crops that may be able to maintain food security in 
this century due to its remarkable nutritional qualities, 
such as a high protein content, fiber, lipids, free of 
gluten, having considerable amount of fatty-acids, 
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vitamins, minerals, and phytochemicals (Vilcacundo 
et al., 2017; Hinojosa et al., 2018; Akram et al., 2021; 
Hafeez et al., 2022). Additionally, the amounts of 
all essential amino acids exceed by WHO/FAO 
recommended in all age group categories ( Joint, 2007; 
Filho et al., 2017). Moreover, its tremendous ability to 
withstand under abiotic stress conditions (Akram et 
al., 2021, 2023; Rivelli et al., 2023) attracts the world’s 
attention towards its introduction in new areas.

Globally, in arid and semi-arid areas salinity is the 
main threat for production of crops (Sabagh et al., 
2020). In arid areas, effect of salinization enhances 
because of low rainfall, high evapotranspiration, 
high temperature and inappropriate soil and water 
management practices (Minhas et al., 2020; Victoria 
et al., 2023; Waqas et al., 2023a). In the world more 
than 45 million hectares (Mha) of irrigated land is 
salt affected and each year 1.5 M ha land become 
unproductive because of high salinity (Munns and 
Tester, 2008). Soil salinization rate is rapidly escalating 
and is expected to affect 50% of arable cropland by 
2050 (Shrivastava and Kumar, 2015). Among arable 
land of Pakistan, 6.8 M ha soil is salt affected from 
which 2.7 M ha soil is in Punjab province (Yaseen and 
Rao, 2002). There are two reasons for salt deposition 
and arable land degradation, natural (primary) 
and anthropogenic (secondary) (Sakadevan and 
Nguyen, 2010). Salt-affected land loses its aesthetic 
and economic value due to spread of salinization 
in continuous populated and already economically 
challenged countries which include Bangladesh, 
Pakistan and India which is causing unsustainability 
of agriculture.

Numerous approaches could be exploited to 
mitigate the adverse effects of salt stress, i.e., use 
of phytohormones, Osmo-protectants, crop water 
extracts, cultivation of salt-tolerant crops, fertilizer 
amendments, and different cultural practices (Zahra et 
al., 2021; Saddiq et al., 2019; Zahra et al., 2022; Waqas 
et al., 2023b). The cultivation naturally salt tolerant 
plants (halophytes) gaining popularity in the world 
(Zhang et al., 2018; Hafeez et al., 2021). Halophytes 
can be grown in different salty environments 
range from coastal areas to desert (Bueno and 
Cordovilla, 2020). Halophytes can tolerate higher salt 
concentrations with adaptations such as high uptake 
of potassium (K+) as compared to sodium (Na+), ions 
compartmentalization in vacuole, accumulation of 
organic solutes, and salt secreting bladders and glands 

(Yun and Shabala, 2020; Nazeer et al., 2022). They 
are capable of not only being surviving (100-200 
mM NaCl) but gaining benefits from highly saline 
irrigation, therefore suggested for arid and semiarid 
agro-ecological areas, therefore in some halophyte 
species no significant yield reduction was found even 
at sea water irrigations, i.e., Chenopodium quinoa 
Willd (Hariadi et al., 2011). Any conventional known 
crop specie is not capable to tolerate such high salt 
concentrations. 

Quinoa (pseudo-cereal) is a known as facultative 
halophyte whose germplasm being able to survive 
salinity even at sea water of 400 mM NaCl level 
(Eisa et al., 2017). They also observed that under 
saline condition the protein, phosphorus, potassium, 
sodium, iron, and copper contents were improved 
while decreased grain yield, weight of 1000 seeds, 
zinc, calcium and carbohydrate as compared to normal 
conditions. Iqbal et al. (2017) reported that increased 
the gaseous exchange indicators, proline, phenolics, 
plant height and main panicle length at salinity level 
10 dS m-1 in all lines as compared to control. Saleem et 
al. (2017) observed that the chlorophyll index, shoot 
and root Na+ and K+ were improved but shoot fresh 
and dry weight were not affected at 100 mM salinity 
level as compared to non-saline conditions.

Quinoa as a future alternate crop has huge diversity 
in its germplasm for salt tolerance under different 
climate and salt conditions. Therefore, this trial was 
conducted to examine the five quinoa lines (L30, 
L81, L11, L9, and L24) for salt tolerance (0 dSm-1, 
15 dSm-1, and 30 dSm-1) having better growth and 
physiological mechanisms.

Materials and Methods

Pots experiment was conducted at department of 
environmental sciences, in COMSATS University 
Islamabad (Abbottabad Campus-Pakistan). Five 
lines of Quinoa (L30, L81, L11, L9 and L24) were 
obtained from University of Agriculture Faisalabad 
and seeds were sown in the nursery for homogeneous 
germination of Quinoa accessions in September 2019. 
Seeds were sown in sand and started to germinated 
after 4 days and then macro and micro nutrient 
solutions were prepared with specific concentration to 
obtain desired concentration of the nutrient solution 
KH2PO4 (200 mM), K2SO4 (500 mM), Ca (NO3)2 
(500 mM), CaCl2 (500 mM), MgSO4 (500 mM), Fe-
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EDTA (200 mM), H3BO3(5 mM), MnSO4 (2 mM), 
ZnSO4 (0.5 mM), CuSO4 (0.3 mM), (NH4) Mo7O24 
(0.01 mM). Until the 4th leaf stages seedlings were 
irrigated every day with nutrient solution. After that by 
following the required treatments T1: Control, T2:15 
dSm-1 and T3:30 dSm-1 seedlings were transferred 
into soil. After 1 month of transplanting Quinoa was 
harvested for further biochemical analysis. 

About 3 kg soil were collected from 0-20 cm 
depth and sieve by using 2 mm pore size for soil 
characteristics. Soil pH measured by using the 
pH meter (PHS-25CW Microprocessor pH/mV 
meter) (Makanjuola and Coker, 2019) that was 7.2. 
Electric conductivity of soil was measured by using 
the HANNA HI 98129 PH/EC/TDS tester meter, 
HI98129 (Talukdar et al., 2024) that was 2.1. Soil 
moisture content was measured by following the 
(Schulte et al., 2012). Organic matter content of the 
soil was determined by the wet oxidation method 
using K2Cr2O7  (Walkley and Black, 1934) that was 
0.71. Texture of soil measured by (Dewis and Freitas, 
1970) method that was sandy loam. Ionic analysis of 
the soils (Na+, K+, Ca2+ and Mg2+) were determined by 
following the (Goyal et al., 1993). The Soil absorption 
ratio was measured by (Richards, 1954) method 
that was 9. By following the (Khalil et al., 2015) soil 
saturation percentages were measured. Three different 
salinity levels i.e., control, 15 dSm-1 and 30 dSm-1 

with three replications (total 45 pots) were produced 
by following the outlines of U.S.D.A. Salinity 
Laboratory Handbook 60 (Richards, 1954) method. 
Every pot irrigated with tap water by maintaining 
the field capacity level (Algosaibi et al., 2015). Every 
pot received fertilizers (NPK) at the concentration 
of Urea (CH₄N₂O), 0.1224 g first half dose before 
sowing and 0.1224 g second half dose after 2 week of 
germination, DAP (NH4)2HPO4, 0.212 g before of 
sowing and MOP (KCl), 0.1126 g before of sowing, 
respectively. 

After harvesting, plant growth parameters (leaf 
area, leaf length, shoot height and root length) were 
analyzed by following the (Saiz-Fernández et al., 
2020) method. Fresh and dry weight of the leaves and 
roots were measured by using the analytical balances 
(Qadir et al., 2017). Total ion concentration (Na+, K+, 
Ca2+ and Mg2+) in leaves and roots were measured by 
following the (Shahzad et al., 2012). Relative Water 
Contents RWC (%) of leaves and roots were measured 
by using the following Equation.

RWC (%)= FW-DW/FW × 100

Protein content in the Quiona leaves were measured 
by the (Bradford, 1976) method (Koyro et al., 2008).

The design was completely randomized design with 
factorial arrangements. Statistical analysis was done 
by using the statistic 8.1 and HSD tukey test was 
done to compare the means value.
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Figure 1: Effect of salinity stress on different lines of quinoa growth 
related attributes.

Results and Discussion

Shoot length, shoot fresh and dry weight significantly 
affected by salinity, however, maximum shoot length 
under all salinity levels was observed in L30 followed by 
L24, L81, L11 and L9 under all conditions. Similarly, 
highest shoot fresh and dry weight were noted in L30 
and L24 as compared to other genotypes (Figure 1A-
C). Growth of quinoa genotype L30 as compared to 
others L81, L11, L9, and L24 was not significantly 
affected by the salinity up to the 15 dSm-1 for root 
length that decreased at rising salt levels. Likewise, 
highest root fresh and dry weight were noted in L30 
and L24 followed by L81, L9 and L11 (Figure 1D-F). 
The salinity can provoke osmotic stress by increasing 
extracellular solute concentration, that can lead to a 
decrease in water potential and loss of cellular turgor 
potential (Abotbatta, 2020). Thus, the reduction in 
plant development indices, particularly root and 
shoot fresh and dry weights, as salinity levels rise is 
connected to an increase in osmotic potential in water 
challenged plants (Betzen et al., 2019) this could be 
owing to elevated extracellular solute concentrations 
or lower cell volumes during drought. In quinoa 
plants, thick-walled cells adapted to water loss under 
osmotic stress do not lose turgor even in extreme 
water stress (Adolf et al., 2013). Quinoa plant height 
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is one of the most salinity sensitive features (Hussain 
et al., 2020). In the current trial, the alteration in 
shoot length of five lines in response to salt stress was 
distinct. However, L30 retained shoot length up to 15 
dSm-1 salinity after that there was a decline in shoot 
length, while in L81, L11, L9, L24, the shoot length 
dropped at both saline levels. Lines L30 and L24 
maintained plant growth parameters up to 15 dSm-1 
salinity level and then salt stress affected their growth 
parameters at further levels, this could be related to 
quinoa plants’ ability to retain water status even in a 
salt condition while L11 displayed sensitivity even at 
15 dSm-1 salinity level. This reduction in growth could 
be related to photosynthetic rate and chlorophyll 
contents, both of which had been exposed to decrease 
under severe salinity stress (Waqas et al., 2021). 
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Figure 2: Effect of salinity stress on different lines of quinoa 
chlorophyll contents, leaf area and protein contents.

In current trial chlorophyll contents were also 
decreased by increasing level of salinity, however, 
highest chlorophyll content was noted in L30 
followed by L24, L81, L9 and L11 (Figure 2A). A 
considerable decrease in photosynthesis activity and 

chlorophyll contents were allied with a noteworthy 
decrease in stomatal conductance and high levels of 
Na+ buildup in leaf tissues, both of which significantly 
reduce plant photosynthetic capability. The drop in 
photosynthetic capability could be attributed to a 
decrease in the activity of photosynthetic enzymes 
such as Rubisco, which decreases with salinity level 
(Hussin et al., 2020). The maximum protein and 
leaf area was significantly altered by salinity levels. 
The highest protein and leaf area was observed in 
L30 followed by L24 under 15 dSm-1 and 30 dSm-1 
while minimum was noted under both salinity levels 
in L9 (Figure 2B, C). Turcios et al. (2021) noted 
that increase in leaf area of quinoa under salinity 
levels showed the salt tolerance. The decrease in 
chlorophyll contents in quinoa plants under salinity 
stress is a common indication of oxidative stress, and 
it is frequently associated with a lack of chlorophyll 
synthesis as well as the activation of its breakdown by 
the enzyme chlorophyllase that ultimately cause the 
reduction leaf area (Qureshi and Daba, 2020).
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Figure 3: Effect of salinity stress on different lines of quinoa relative 
water contents in shoot and root.

RWC was not significantly declined at lower salinity 
level 15 dSm-1 in both genotypes L30 and L24, 
confirming the salt loving nature of both genotypes 
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while decreased 30 dSm-1 while minimum RWC was 
observed in L11 under both salinity levels that showed 
this a sensitive genotype (Figure 3A-B). Similarly, 
Abbas et al. (2021) noted that under above 10 dSm-1 

the RWC in quinoa lines was not affected, however, 
further increase in salinity level decreased the RWC. 
However, the continuation balance of water directly 
links with ionic interactions (Shuyskaya et al., 2023).

Quinoa lines appear to have regulated water-relations 
by enhancing inorganic osmotica uptake accumulation 
potassium and sodium in root and shoot, it is 
termed as “hypertonic” condition. In quinoa, salinity 
tolerance is substantially linked with inhibition of 
shoot potassium deficiency and suitable leaf cytosolic 
potassium and sodium ratio (Cai and Gao, 2020). In 
the present trial, lines L30 and L24 had better leaf 
potassium, calcium, magnesium and sodium at all salt 
levels, thus representing salt tolerance (Figures 4, 5). 
This could be due to effective sodium dumping in the 
leaf vacuole or sodium translocation to older leaves. 
In the current trial, sodium was evaluated in young 
leaves, and young leaves typically had a lower degree 
of accumulation (Adolf et al., 2013). It appears that 
lines L30 and L24 responded at the whole plant level 
by translocating sodium in older leaves, resulting in 

low Na+ loads in young leaves, or it appears that there 
are sodium restrictions at the root paranchyma, as 
root Na+ contents of L30 and L24 were higher when 
grown in saline solutions, particularly at 30 dSm-

1. This approach of minimal sodium buildup could 
also be linked to preferential K+ uptake at the root 
parenchyma and translocation to the leaf, as leaf K+ 
concentration was observed to be higher in L30 and 
L24. Under salt stress, quinoa plants acquire higher 
K+ in their leaves (Mohammadi et al., 2022), which 
was validated in this investigation. Another probable 
explanation is a change in Na+ loading in the xylem. 
Nutrient intake at the root parenchyma, radial ion 
transport, and loading to the shoot have all been 
described as being mainly uncoupled (Lu and Fricke, 
2023; Karahara and Horie, 2021). According to a 
recent halophyte review, thermodynamically, sodium 
loading in xylem is undoubtedly an active process 
assisted by SOS1 and Na+/H+ exchangers (Cuin 
et al., 2011). It also appears that xylem potassium 
and sodium loadings are uncoupled in quinoa, and 
hence tolerant lines may have higher activity of Na+/
H+ exchangers positioned at the xylem parenchyma 
border. This hypothesis’ confirmation could be 
included in future research initiatives.
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Figure 4: Effect of salinity stress on different lines of quinoa calcium and magnesium in shoot and root.
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Figure 5: Effect of salinity stress on different lines of quinoa potassium and sodium in shoot and root.

Conclusions and Recommendations

The better salt tolerance was displayed by line L30, 
followed by L24. These lines have better growth 
attributes, chlorophyll contents, protein contents, 
relative water contents and ions uptake as compared 
to L81, L9, and L11. The present trial recognised the 
maximum salt-tolerant lines under severe salt stress, it 
might be applied to improve quinoa’s tolerance to salt 
in a later breeding phase. Considering the increase 
in Quinoa tolerance to salinity after establishment 
of vegetative part in the soil, it is recommended to 
perform irrigation by water with salinity equal or less 
than 30 dS m−1.Because quinoa has the feasibility of 
irrigation by high-saline water. Salinity does not have 
significant decreasing effect on the growth of Quinoa 
at vegetative growth stage in this study. But, the amount 
of growth and yield reduction strongly depended on 
the method you apply salinity. High levels of K+/
Na+ ratio of Quinoa varieties V30 and V24 helped to 
withstand salt stress and might be the cause of high 
growth under both normal and salt affected soil. So, it 
is concluded that quinoa keeps effective homeostatic 
mechanisms related to K+ retention and osmotic 
adjustment, make it astonishing salt-tolerant plant. 
Quinoa plant mineral and protein concentration also 
did not decrease drastically under different salt stress 
in this study. By considering the results of this study, 

it is recommended to cultivate Quinoa varieties on 
saline affected areas of Pakistan.
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