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Introduction

Persistent respiratory conditions like asthma and chron-
ic obstructive pulmonary disease (COPD) remain sig-

nificant global challenges for individuals and healthcare 
systems due to respiratory complications, prolonged hos-
pitalization, and heightened mortality risks (Liccardi et al., 
2012). Typically, asthma involves immune system activa-
tion, leukocytes infiltration, excessive mucus production, 

and remodeling of the airways (Boonpiyathad et al., 2019, 
Athari, 2019). Moreover, COPD has emerged as a signifi-
cant contributor to mortality and has been classified as the 
third leading cause of death worldwide (Sritharan et al., 
2021, Lee and Sin, 2022). Individuals with COPD face a 
heightened risk of infection, lung cancer, and sudden oc-
currences of acute pulmonary embolism (Lopez-Campos 
et al., 2014, Patel and Priefer, 2022). 
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Eosinophils exhibit a bi-lobed structure and serve as ver-
satile cells within the innate immune system. They pos-
sess a variety of cell surface receptors that play a role in 
controlling both local immune reactions and inflammatory 
responses (Sharma et al., 2022). The recruitment of eo-
sinophils effectively triggers a distinct immune response, 
subsequently resulting in airway hyper-responsiveness and 
remodeling. These phenomena are recognized as promi-
nent indicators of chronic respiratory disorders (Lee et al., 
2021). Prior studies have provided supporting evidence re-
garding the presence of eosinophilic infiltration within the 
respiratory system in cases of airway inflammatory diseases 
(Nagasaki et al., 2019, Aubier et al., 2018).

Neutrophils represent the predominant cellular compo-
nent in human blood and play an important role as pri-
mary responders in the initial defense against pathogens 
(Rungelrath et al., 2020). In the context of pulmonary in-
fections, these cells are mobilized to the site of inflamma-
tion, where they initiate the inflammatory process through 
the secretion of diverse pro-inflammatory chemokines 
and cytokines (Ham et al., 2022). Apart from eosinophils 
and neutrophils, the involvement of monocytes, as well as 
monocyte-derived and resident pulmonary macrophages, 
holds indispensable significance in the course of inflam-
mation. Macrophages constitute a category of cells that 
facilitate responses within both innate and adaptive im-
munity (Kosyreva et al., 2021). During the inflammatory 
process, monocytes can differentiate into macrophages or 
dendritic cells upon stimulation by particular inflammato-
ry cytokines (Takeda et al., 2018). Moreover, prior studies 
have demonstrated significant infiltration and activation 
of neutrophils and monocytes within the airways as a re-
sponse to inflammation (Takeda et al., 2018, Gómez-Rial 
et al., 2020). 

Presently, Corticosteroids are considered the preferred op-
tion for managing pulmonary inflammatory events (Rit-
chie and Wedzicha, 2020). Nonetheless, a significant per-
centage of individuals with asthma still struggle to achieve 
disease recovery (Buhl et al., 2018). Challenges in treating 
airway inflammatory diseases arise due to the absence of 
secure and effective disease-modifying therapies. There-
fore, it is essential to prioritize the research objective of 
exploring alternative medical options.

Famotidine is an approved medication by the United 
States Food and Drug Administration for peptic ulcers 
and gastroesophageal reflux disease (GERD), belongs to 
the class of histamine-2 receptor (H2R) antagonists (Ba-
louch et al., 2023). Famotidine is considered a cost-ef-
fective, and readily accessible medication, with excellent 
tolerability and minimally documented drug-drug inter-
actions (Brennan et al., 2022). In addition, Famotidine has 
demonstrated safe usage across a broad spectrum of oral 

doses, ranging from 20 mg once daily to 160 mg four times 
daily ( Janowitz et al., 2020). Its widespread use by millions 
of patients worldwide further supports its safety profile 
(Brennan et al., 2022). Histamine triggers the activation 
of protein kinase A, resulting in the (H+/K+) activation, 
which ultimately leads to elevated secretion of gastric acid 
(Seldeslachts et al., 2023). The H2R, which famotidine tar-
gets, extends beyond the stomach and is also present in 
other anatomical regions, including the pulmonary system 
(Mukherjee et al., 2021). Research findings indicate that 
famotidine achieves systemic concentrations capable of ef-
fectively antagonizing H2R on various cell types, including 
those present in inflammatory cells (Malone et al., 2021).

The primary objective of this study was to assess the effi-
cacy of famotidine in treating airway inflammatory disease 
in rats. This evaluation involved examining its potential 
to suppress inflammatory cells and prevent pathological 
changes in lung tissue in rats that were sensitized with 
ovalbumin (OVA).

Materials and methods

Ethics Statement
Animal experiments were carried out in accordance with 
the ethical guidelines outlined in the European Union 
Directive (86/609/EEC) dated November 24, 1986, and 
received approval from the local ethical committee at the 
College of Pharmacy, University of Basrah.

Material
The medication, materials, and chemicals utilized in this 
research comprise famotidine from Medocheme Ltd-Cy-
prus, prednisolone from The State company for Drugs 
Industry and Medical pliances-Iraq, phenobarbital from 
IBN HAYYAN Pharmaceutical co.-Syria, OVA pow-
der from RIEDEL-DEHAENAG, SEELZE-HAN-
NOVER-Germany, aluminum hydroxide powder from 
MERK Darmstadt-Germany, 0.9% sodium chloride solu-
tion from Pharmaceutical Solution Industry-Saudi Arabia, 
and formaldehyde 37% from Aqua Medical-Turkey.

Animals
A total of thirty healthy adult male albino rats, aged be-
tween 2-3 months and weighing 150-200 grams, were used 
in this study. These rats were procured from the Biotech-
nology Research Center / Nahrain University, and were 
randomly housed in suitable cages at the Animal House of 
the Pharmacy College, University of Basrah.

To ensure proper adaptation, the rats were allowed to adapt 
to their new environment for 14 days. During this period, 
optimal conditions were maintained, including a tempera-
ture of 21 ± 4 degrees Celsius, a light-dark photoperiod of 
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12 hours of light and 12 hours of darkness, and efforts were 
made to minimize unnecessary stress. Throughout the ex-
periment, the rats were provided with a commercial pellet 
diet and had access to clean tap water.

Animal grouping
A_group (Negative Control): Rats received distilled water 
only, without any drug, for 14 days.
B_group (Positive Control): Rats underwent OVA sensiti-
zation and challenge of the airways.
C_group: Rats were treated orally with a dose of predniso-
lone (4.12 mg/kg/d) and subjected to OVA sensitization of 
the airways (Ahmed et al., 2021).
D_group: Rats received oral famotidine at a dose of 20 mg/
kg/d after OVA sensitization of the airways (Loffredo et 
al., 2021).
E_group: Rats were given both oral prednisolone (4.12 
mg/kg) and famotidine (20 mg/kg) after OVA sensitiza-
tion of the airways (Ahmed et al., 2021, Loffredo et al., 
2021).

Experimental method
The method of inducing airway inflammation in rats 
through OVA-sensitization (applied to all groups except 
A_group) was modified from the approach used by pre-
vious researchers. During days 1-3 of the experiment, the 
rats were sensitized through intraperitoneal (IP) injections 
of a mixture containing 1 mg of OVA and 100 mg of alu-
minum hydroxide in 1 mL of N/S. This sensitization was 
administered once daily to the rats in the respective groups, 
except A_group. They were allowed to rest without any ad-
ditional interventions. From days 6 to 8 of the experiment, 
the rats were subjected to another round of sensitization 
through IP injections. This time, the injection contained 
100 mg of OVA and 100 mg of aluminum hydroxide in 1 
mL of N/S. The sensitization was administered once dai-
ly during this period for the respective groups, except A_
group. From days 9 to 14 of the experiment, the rats were 
challenged by being placed inside a glass chamber meas-
uring 30 x 35 x 40 cm. This chamber was connected to a 
nebulizer that generated a 1% OVA aerosol, which consist-
ed of 1 gm of OVA dissolved in 100 mL of N/S. The rats 
inhaled this aerosol for 30 minutes each day as part of the 
challenging process. On day 15, the rats were killed by an 
IP injection of (800 mg/kg) of sodium phenobarbital and 
sacrificed for further analysis and examination (Ahmed et 
al., 2021, Algaem et al., 2013, Alabdali and Ibrahim, 2023).
In groups receiving prednisolone and famotidine, the drug 
doses were given 60 minutes before exposing the rats to 
airway sensitization with OVA. This pre-treatment was 
conducted to evaluate the impact of the drugs on the air-
way inflammation induced by OVA sensitization (Ahmed 
et al., 2021). The process of broncho-alveolar lavage in-
volved infusing 3 mL of N/S through a catheter which was 

inserted into the rat’s trachea. The broncho-alveolar lavage 
fluid (BALF) was then centrifuged at 3000 rpm for 4 min. 
The inflammatory cells present in the BALF were then 
quantified using an automated hematology analyzer (Al-
abdali and Ibrahim, 2023, Poitout-Belissent et al., 2021, 
Alabdali and Algaem, 2023).

The left lung was cut, rinsed with saline, and preserved in 
cups containing 10% formaldehyde for subsequent his-
topathological analysis (leukocytes count). The histolo-
gy images of lung segments were carefully inspected and 
photographed using a light microscope at the amplifica-
tion of X40. Inflammatory cells that infiltrated the bronchi 
and alveoli were assessed through a series of lung sections 
stained with H&E (hematoxylin and eosin) (Alabdali and 
Ibrahim, 2023, Ahmed et al., 2021).

Statistical analysis
In this study, mean ± SEM values were represented using 
bar graphs. Statistical analysis was performed using the 
Statistical Package for the Social Sciences, version 20. The 
statistical differences were assessed using ANOVA, and a 
significance level of P<0.05 was set to determine statistical 
significance.

Results

The Effect of Famotidine on Eosinophils 
Count/µ l in the BALF of a Rat Model of Airway 
Sensitization
Following airway sensitization, the positive control group 
exhibited a significantly higher eosinophils count (P<0.05) 
compared to the negative control group (5.40±1.69 and 
0.003±0.002), respectively. In contrast, the groups treated 
with prednisolone, famotidine, and both (prednisolone and 
famotidine) showed a significant decrease in eosinophils 
count (P<0.05) compared to the positive control group 
(0.002±0.002, 0.07±0.07 and 0.003±0.002), respectively. 
Furthermore, there was no significant difference between 
the famotidine, (prednisolone and famotidine) treat-
ed groups when compared with the prednisolone treated 
group, as illustrated in Figure 1. 

The Effect of Famotidine on Neutrophils 
Count/µ l in the BALF of a Rat Model of Airway 
Sensitization
 The neutrophil count in the BALF of rats exhibited a sig-
nificant increase (P<0.05) in the positive control group in 
comparison to the negative control group (19.05±10.34 
and 0.218±0.039), respectively. Furthermore, the neu-
trophil counts in the airway OVA-sensitized rats treated 
with prednisolone, famotidine, and both (prednisolone 
and famotidine) showed a significant reduction (P<0.05) 
compared to the positive control group (0.633±0.210, 
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0.736±0.247, and 0.555±0.193), respectively. Moreover, no 
significant difference was shown between the famotidine, 
(prednisolone and famotidine) treated groups when com-
pared with the prednisolone treated group, as illustrated in 
Figure 2.

Figure 1: The effect of famotidine on the eosinophils count 
in the BALF of airway-sensitized rats. OVA-sensitization 
resulted in an increase in eosinophils count in the BALF, 
whereas treatment with famotidine reduced these counts. 
A_group, negative control; B_group, positive control 
(sensitized); C_group, prednisolone; D_group, famotidine; 
E_group, prednisolone and famotidine; *= denoting 
statistical significance (P<0.05) in comparison to A_group; 
a= denoting statistical significance (P<0.05) in comparison 
to B_group.

Figure 2: The effect of famotidine on the neutrophils count 
in the BALF of airway-sensitized rats. OVA-sensitization 
resulted in an increased neutrophil count in the BALF of 
rats, whereas famotidine treatment reduced this expression 
significantly. A_group, negative control; B_group, positive 
control (sensitized); C_group, prednisolone; D_group, 
famotidine; E_group, prednisolone and famotidine; *= 
denoting statistical significance (P<0.05) in comparison to 
A_group; a= denoting statistical significance (P<0.05) in 
comparison to B_group.

The effect of Famotidine on Mononuclear 
Cells Count/µ l in the BALF of a Rat Model of 
Airway Sensitization
The count of mononuclear cells in the BALF of rats was 
significantly increased (P<0.05) in the positive control 
group when compared with that of the negative con-
trol group (21.42±6.47 and 0.218±0.061), respectively. 
Moreover, the counts of mononuclear cell in the D- and 
E_groups of OVA-sensitization that were treated with 
prednisolone, famotidine, and both (prednisolone and fa-
motidine) demonstrated a significant reduction (P< 0.05) 
when compared to the positive control group (0.745±0.155, 
1.33±0.526, and 0.441 ±0.184), respectively. In addition, 
no statistical significance was demonstrated between the 
Famotidine, (prednisolone and famotidine) treated groups 
when compared with the prednisolone treated group, as 
shown in Figure 3. 

Figure 3: The effect of famotidine on the mononuclear 
cell count in the BALF of airway-sensitized rats. OVA-
sensitization was associated with a significant elevation 
in mononuclear cell count present in the BALF, whereas 
treatment with famotidine led to their significant 
reduction. A_group, negative control; B_group, positive 
control (sensitized); C_group, prednisolone; D_group, 
famotidine; E_group, prednisolone and famotidine; *= 
denoting statistical significance (P<0.05) in comparison to 
A_group; a= denoting statistical significance (P<0.05) in 
comparison to B_group.

The Effect of Famotidine on Total WBC 
Count/µ l in the BALF of a Rat Model of Airway 
Sensitization
The count of total WBC in the BALF of rats was signifi-
cantly higher (P<0.05) in the positive control group when 
compared to the negative control group (42.17±16.75 and 
0.463±0.076), respectively. Furthermore, the total WBC 
count in the airways of OVA-sensitized rats when treat-
ed with prednisolone, famotidine, and both (prednisolone 
and famotidine) showed a significant reduction (P< 0.05) 
when compared to the positive control group (1.39±0.358, 
1.27±0.439, and 0.965±0.369), respectively. In addition 
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to that, no significant difference was shown between the 
famotidine and prednisolone plus famotidine treatment 
groups when compared with the prednisolone treatment 
group, as demonstrated in Figure 4.

Figure 4: The effect of famotidine on total WBC count 
in the BALF of airway-sensitized rats. After OVA 
sensitization, there was a general increase in the number 
of inflammatory cells in the BALF. However, treatment 
with famotidine resulted in a significant reduction in the 
WBC count. A_group, negative control; B_group, positive 
control (sensitized); C_group, prednisolone; D_group, 
famotidine; E_group, prednisolone and famotidine; *= 
denoting statistical significance (P<0.05) in comparison to 
A_group; a= denoting statistical significance (P<0.05) in 
comparison to B_group.

The Effects of Famotidine on the 
Histopathology of Lung Tissue Following 
OVA-Sensitization of the Airway in Rats:
The histopathological examination of lung tissue from 
healthy rats in (A_group) revealed well-preserved bronchi-
oles and alveoli. The bronchioles were dilated and demon-
strated a normal architecture with an intact epithelial lin-
ing, and the alveoli appeared healthy, exhibiting normal 
wall thickness. Notably, no indications of inflammation or 
cellular infiltrates were observed within the alveolar spaces 
(Figure 5, A_group).

In (B_group), OVA-sensitization led to bronchoconstric-
tion, resulting in the narrowing of the airways. Moreover, 
there was a clear inflammation of submucosal cells with 
leukocytes infiltration (mainly neutrophils and lympho-
cytes) detected by the exudate of such cells in bronchial 
lumen, suggesting an immune response with evident signs 
of damage and disruption. Furthermore, an increase in the 
alveolar macrophages population was observed. Alveolar 
wall thickness was increased in addition to the prolifera-
tion of alveolar cells within the damaged lung tissue (Fig-
ure 5, B_group).  

Prednisolone treatment in (C_group) significantly im-
proved the histopathological appearance. The bronchioles 

exhibited a more intact and organized epithelial lining with 
normal epithelial cell wall and lumen. Furthermore, there 
was an evident bronchodilation and no signs of bronchiolar 
call wall thickness. The reduction in leukocytes infiltrates 
within the bronchiolar walls indicated a notable decrease 
in inflammation. The alveoli revealed signs of wall resto-
ration and total repair. However, the alveolar wall showed 
slight thickness with few scattered leukocytes within the 
alveoli (Figure 5, C_group).

Treatment with famotidine in (D_group) led to the reduc-
tion in cellular debris and inflammatory cell accumulation 
within the bronchioles except for minimal infiltration of 
macrophages. Bronchiolar cell walls were healthy with 
normally dilated bronchiolar lumen when compared to 
(B_group). The alveolar epithelial cells showed restoration 
towards their normal structure. A dilation of the alveolar 
lumen was noted, accompanied by a reduction in inflam-
matory cells, except for the presence of a few scattered 
macrophages within the alveolar spaces when compared to 
(B_group) (Figure 5, D_group).

Prednisolone with famotidine treatment in (E_group) also 
resulted in an overall improvement in lung histology. The 
histopathology of lung tissue revealed a slight dilation in 
bronchioles with normal structure of the cell walls. How-
ever, there was a detectable narrowing in the alveoli with 
infiltration of alveolar macrophages within the lung tissue 
when compared to (B_group) (Figure 5, E_group).

Figure 5: The effect of famotidine on the lung tissue 
histopathology. The process of OVA-sensitization resulted 
in a noticeable increase in the accumulation of leukocytes 
in lung tissue. However, in rats treated with famotidine, 
this accumulation was reduced, highlighting the anti-
inflammatory effect of famotidine. Lung tissue photos 
were taken by light microscope, X-40, H&E stain. The 
arrows point to inflammatory cells; b, bronchioles; a, 
alveoli; A_group, negative control; B_group, positive 
control; C_group, prednisolone; D_group, famotidine; E_
group, prednisolone and famotidine.

Discussion

Pulmonary inflammation is a protective response of the 
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body by removing harmful substances such as irritants and 
damaged cells. Nevertheless, excessive inflammation can 
contribute to different lung disorders (Makris et al., 2017). 
Several findings indicate that famotidine can assist in al-
leviating inflammation triggered by histamine. Famotidine 
blood concentrations can reach sufficient levels to block 
histamine H2R present in several leucocytes (Mukherjee 
et al., 2021). A prior study showed that treatment with fa-
motidine resulted in a more favorable clinical outcome in 
cases of severe Coronavirus Disease-2019 (COVID-19) 
(SÖZEN, 2023). Famotidine may also have an effect by 
scavenging reactive oxygen radicals, thus reducing second-
ary inflammation and damage (Yang et al., 2022). 

Corticosteroids, including prednisolone, serve as the cor-
nerstone of airway inflammation treatment. However, 
these medications come with a wide range of adverse ef-
fects, especially when used for prolonged periods (Wil-
liams, 2018, Cutrera et al., 2017).

In this study, the rat model sensitization was induced by 
OVA antigen and the aluminum hydroxide as an adju-
vant, together they stimulated the rat’s adaptive immune 
response (Casaro et al., 2019). The use of OVA has been 
employed in previous studies to induce respiratory inflam-
mation in rats (Algaem et al., 2013, Hsu et al., 2012). 

It is widely recognized that the allergic immune response 
begins with an initial phase known as sensitization, char-
acterized by the production of antibodies directed against 
the allergen. The IP route has likely been the most conven-
tional method for inducing sensitization. The subsequent 
phase is referred to as the challenge stage. Upon subse-
quent exposures to the same allergen, inflammatory cells 
in the airways become activated. Furthermore, these effec-
tor cells release inflammatory mediators (histamine), lead-
ing to edema, bronchospasm, and accumulation of mucous 
in the airways. The aerosol route is less invasive and does 
not require animal sedation. In addition, this route places 
the antigen directly in the respiratory system (Aun et al., 
2017).

The ability of famotidine to alleviate eosinophil infiltra-
tion in the BALF suggests that famotidine, like predni-
solone, has the potential to prevent eosinophil activation, 
leading to a reduction in eosinophil-caused inflammation 
in the lungs and airway remodeling. A previous research 
study has demonstrated that eosinophil functions are in-
hibited by H2R activation. The binding of histamine leads 
to a reduction in the release of eosinophil peroxidase, and 
at high concentrations, it blocks the eosinophil chemot-
axis (Malone et al., 2021). Considering the findings from 
pharmacokinetic studies, which indicate that famotidine 
achieves blood concentrations capable of antagonizing 

histamine H2R present in neutrophils, mast cells,  and 
eosinophils, these observations provide a rationale for fa-
motidine’s potential in modifying histamine-induced in-
flammation and cytokine release (Mukherjee et al., 2021).

When neutrophils are activated in the airways, they are 
associated with tissue damage and remodeling during the 
inflammatory process, potentially contributing to organ 
injury (Wang et al., 2018). Famotidine’s significant reduc-
tion in neutrophils was attributed to its ability to counter 
the accumulation of leukocytes, resulting in a reduction in 
the magnitude of respiratory inflammation. Other studies 
corroborate these findings, demonstrating that famotidine 
treatment was associated with a reduction in neutrophils 
(Malone et al., 2021, Hosseini et al., 2023). One plausible 
explanation is that H2R activation in neutrophils inhib-
its their effector functions, including the release of O2- 
(Malone et al., 2021).

Histamine is known to exert a regulator, pro-inflammatory 
immune responses triggered by monocytes, including mac-
rophages (Bernardino, 2021). In this study, famotidine’s re-
duction in the accumulation of mononuclear cells suggests 
that famotidine has an inhibitory effect on inflammation 
of the airways, likely attributable to the decreased presence 
of mononuclear cells and the subsequent decrease in in-
flammatory molecules and cytokines that are produced by 
these cells. 

The influence of famotidine on H2R can result in the 
modulation of immune system, leading to a reduction in 
airway inflammation, particularly through T-helper-1 
lymphocytes (Hogan Ii et al., 2020). In this study, famoti-
dine caused a reduction in the total WBC count in the 
BALF. This finding is consistent with a prior study that 
demonstrated a significant decrease in the WBC count for 
patients following treatment with famotidine when com-
pared to placebo (Samimagham et al., 2021). 

To be specific, famotidine treatment has been shown to 
inhibit the expression of Toll-like receptor 3 (TLR3) in 
COVID-19-infected cells, therefore reducing TLR3-de-
pendent signaling processes. Leading to the modulation of 
interferon regulatory factor 3 (IRF3) and the transcription 
factor (nuclear factor kappa-light-chain enhancer of acti-
vated B-cells), known as NF-κB pathway activation, there-
by controlling the inflammatory responses (Mukherjee et 
al., 2021). IRF3 stands as one of the extensively charac-
terized transcription factors engaged in the regulation of 
innate-immune reactions to inflammatory events (Yanai et 
al., 2018).

Multiple preceding studies have established that airway in-
flammation is facilitated through the activation of NFκB 
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by inflammatory mediators. This, in turn, triggers gene 
transcription and the expression of various inflammatory 
mediators, culminating in the activation and infiltration of 
leukocytes (Lee et al., 2017, Sha et al., 2019).  

Histopathological analysis in (A_group) showed normal 
architecture, indicating efficient gas exchange. The limited 
presence of macrophages suggested the absence of patho-
logical processes. The healthy lung tissue of rats was simi-
larly described by a previous study (Ezz-Eldin et al., 2020). 
In the OVA-sensitized rats (B_group), the submucosa was 
highly infiltrated with lymphocytes, which is consistent 
with the pathogenesis of OVA-induced lung inflamma-
tion. The proliferation of alveolar cells indicates potential 
damage to these cells due to the inflammatory response, 
ultimately leading to impaired lung function. These find-
ings were consistent with prior research (Bai et al., 2019, 
Zainal et al., 2019).

The administration of prednisolone (C_group) resulted in 
reversed inflammatory events within the lung tissue. These 
results align with previous research in mice in which pred-
nisolone treatment reversed leukocytes aggregation in lung 
tissue (Chiu et al., 2021). The administration of famoti-
dine, in (D_group) and in combination with prednisolone 
in (E_group), significantly reduced leukocytes infiltration 
in bronchiolar walls, alveolar spaces and septa. In addition, 
a reduced alveolar wall thickness was noted, suggesting at-
tenuation of edema and inflammatory changes. Collective-
ly, famotidine treatment demonstrated lung tissue protec-
tion against the inflammatory process. In previous research, 
the histological damage and inflammation observed in the 
lungs of mice appeared to be reduced significantly through 
the administration of famotidine (Hattori et al., 2016).

Conclusion

Presently, corticosteroids widely regarded as the most 
efficacious medication in the management of airway in-
flammation, however, they are associated with various side 
effects. The findings from this present study indicate that 
famotidine, alone in group_D and when combined with 
prednisolone in group_E, exerts a protective effect against 
OVA-induced airway sensitization in rats by the reduction 
of inflammatory cell infiltration. In addition, famotidine 
has a protective effect against lung tissue remodeling. Con-
sequently, famotidine holds promise as a potential prophy-
lactic medication for inflammatory disease of the airways.
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