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Introduction

Our planet has been significantly warmed by the 
greenhouse gas emissions caused by human in-

terventions leading towards unprecedented and irre-
versible climatic changes. These changes are causing 
our terrestrial environment to transform and evolve 
continuously. According to (Masson-Delmotte et al., 
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2021), it is evident that human interventions have 
caused warming of the atmosphere, land, and ocean. 
Different approaches have been used to project hy-
drological parameters like snow/glacier melt and pre-
cipitation which have indicated probable increase in 
the flow at the basin scale up to the mid of the current 
century. Kundeti et al. (2022) made use of the high 
resolution hydrological data taken from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) 
of two Shared Socioeconomic Pathways (SSP2-4.5 
and SSP5-8.5) that was statistically downscaled and 
corrected for biasness. Their analysis on mean precip-
itation and temperature changes and their extreme 
values over the Indus basin showed a likely increase 
of 40% ( June-September) for temperature and 25% 
(December-February) for precipitation by the end of 
this century.

Future temperature projections show that warming 
may continue over the basin. Ali et al. (2015) projected 
river flow using data generated by Conformal-Cubic 
Atmospheric Model, Regional Climate Model and 
RCP 4.5 and RCP 8.5. They found high uncertainty 
in the projected future runoff for the lower and upper 
Indus basin (UIB) due to high spread in the winter 
and summer precipitation projections. A non-uniform 
change was observed in the projected precipitation, an 
upward change for the upper parts and a downward 
change for the lower parts of the basin. The model pro-
jections has shown an increase in the flow of UIB due 
to a combined effect of warming resulting in increased 
snow/glacier melt and increase in precipitation during 
summer and winter. These changes are detrimental, 
and therefore, the reliable characterization of global 
climatic changes is quite difficult due to the presence 
of inter-annual, multidecadal, or even longer variabil-
ity in the natural climate due to anthropogenic activ-
ities (Kolokytha et al., 2017). A proper understanding 
of the spatio-temporal distribution and the changing 
patterns of temperature and precipitation is required 
for an effective planning and management of the wa-
ter resources.

Climate change has become a menace to the econom-
ic, social, and environmental facets (Lee et al., 2015). 
The components of the hydrologic cycle, both in qual-
ity and quantity, are affected by the climatic variability 
(Pandey et al., 2017a). The hydrological setup of Pa-
kistan is also affected by the adverse effects of climate 
change, and it has become a climate change “hotspot” 
(Kilroy, 2015). According to German Watch Report: 

Global Climate Risk Index 2021 (Eckstein et al., 
2021), Pakistan ranks at 8th position among the most 
adversely affected countries having a CRI score of 
29.0. According to the data collected from 2000-2019, 
Pakistan has faced 03% deaths per 100,000 popula-
tion. The catastrophes induced by climate change have 
given a $3.8 billion worth of economic loss. During 
the recent decade, Pakistan has experienced the most 
terrible droughts, storms, and floods in its history 
(Hussain and Mumtaz, 2014). It is estimated that 126 
heat waves have struct Pakistan from 1997 to 2015 i.e. 
about seven per year with an increasing trend (Nasim 
et al., 2018). More than 1200 lives lost due to the heat 
wave of June 2015 in Karachi (Chaudhry et al., 2015). 
Forty percent of Pakistan’s population is vulnerable to 
disasters like storms and droughts associated to the 
change in rainfall patterns (McElhinney, 2011).

The Indus River basin’s water availability is highly var-
iable as the melting of its water contributing glaciers 
is unpredictable and the future precipitation regime 
is also uncertain (Bolch, 2017). Pakistan’s economy 
is agriculture-based and dependent on a huge irri-
gation system comprised of diversions, barrages and 
channels, mostly fed by the UIB. The livelihood of a 
huge population at the downstream of UIB depends 
on its inflow (Khan et al., 2015). Therefore, the irrigat-
ed agriculture, economy, infrastructure, human- and 
wildlife, all will be highly affected by any changes in 
the demand or supply of the UIB in future (Qin et 
al., 2013). Projections of future glacier change in the 
region have been done at regional scale. The melting 
of the glaciers and snow in the Karakoram, Hima-
laya, and Hindu Kush mountains provides more than 
50% of the inflow to UIB. The increase in temperature 
due to the climate change will also increase the snow 
melting rates in the near future affecting the timing 
and magnitude of the generated flows (Soncini et al., 
2015; Lutz et al., 2016). The mean streamflow, oc-
currence of the extreme events and their magnitudes, 
especially during the rainy seasons, will be increased 
(Wijngaard et al., 2017). Thus, it is very important 
to analyze the shifts in the meteorological indices so 
that better planning and adaptation could be done for 
the unavoidable circumstances as the lives of people 
depend on these precious water resources (Khan and 
Adams, 2019).

Data are a central part of studies that attempt to de-
tect trends and changes in meteorological processes. 
It is very important to have adequate and reliable in-
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formation pertaining to a watershed including data 
of hydrological and meteorological indices for an ef-
fective and sustainable management of the water re-
sources (Horne, 2015). Detection of trends and anal-
ysis of past climatic data is usually done to assess the 
changes in climate (Adamowski et al., 2010). Many 
studies have been conducted on analyzing the climat-
ic variables and detecting trends by using different 
techniques (Khattak et al., 2011; Mondal et al., 2015; 
Chandniha et al., 2017; Ahmad et al., 2018). Different 
parametric/non-parametric methods and graphical 
approaches have been used to analyze climatic trends 
in these studies. Ahmad et al. (2018) used an inno-
vative trend analysis (ITA) method, Mann-Kendall 
(MK), and Sen’s slope estimator tests to study the an-
nual and seasonal precipitation variability for low and 
high precipitation at twenty sites across the upper In-
dus River Basin (UIB). They detected positive trends 
for heavy precipitation with magnitude greater than 
10% at thirteen stations during winter season and at 
eight stations during the summer season. The major-
ity of the stations with significant trends were in the 
UIB’s north-east and north-west regions, implying 
that flooding in the northern regions would intensify, 
while flooding in the southern regions will probably 
decrease. They also found that extended drought oc-
currences are more likely to occur during the winter 
and spring seasons. Khattak et al. (2011) examined 
trends in three hydrometeorological parameters; tem-
perature, precipitation, and streamflow for a period 
of 1967-2005 in UIB in Pakistan. They detected an 
inconsistent pattern of precipitation variability from 
the stations situated in the UIB’s southern region. 
Strong trends were detected in both indices. Signifi-
cant warming trend (p < 0.10) was found in the max. 
temperature of winter season. Their results are strong 
evidence of the warming of UIB during winter and 
cooling of summer seasons during the study period. 
The different methods have been reviewed by (Sonali 
and Kumar, 2013).

The stationarity in the climatic indices has been com-
monly assumed used in the above methods. However, 
this assumption has been comprised due to anthro-
pogenic activities (Milly et al., 2008). The probabil-
ity distribution functions established and associated 
with hydroclimatic variables of a basin are affected by 
changes in the mean values caused by anthropogenic 
sources. There are nonuniform and non-monotonic 
changes in the climate that makes the detection of 
trends complicated, especially in a non-stationary en-

vironment (Franzke, 2010). Since hydrological pro-
cesses may be affected by factors such as weather, veg-
etation cover, infiltration, and evapotranspiration, they 
contain stochastic constituents, and multi-time scale 
and nonlinear properties (Wang and Ding, 2003).

While analyzing trends in hydroclimatic time series, 
not only is it important to check for whether the di-
rection of trends is positive or negative, but also how 
these changes fluctuate within different time-scales 
(i.e., intra- and inter-annual, and decadal events). Hus-
sain et al. (2021) conducted research on the monthly 
minimum and maximum temperatures and precipita-
tion data ranging from 1955-2016 for nine meteoro-
logical stations in the UIB of Pakistan by employing 
Mann-Kendall tests combined with continuous and 
cross wavelet transform to analyze the spatiotempo-
ral variability of temperature and precipitation. Their 
results showed significant warming of winter temper-
atures and cooling of summer temperatures. The pre-
cipitation exhibited increasing trends in annual and 
seasonal time series although no significant change 
was found in the total precipitation of UIB during 
1960-2012. Wavelet analysis illustrated that periodic-
ities were usually constant over short time scales and 
discontinuous over longer time scales. A mathemati-
cal methodology frequently used to detect oscillatory 
signals is the Fourier Transform (FT), which uses 
sine and cosine basis functions. The FT has some 
major drawbacks. Since this method uses single-win-
dow analysis, it is unable to detect the properties of 
signals that are much shorter or longer than the 
size of the window. Furthermore, the sinusoids used 
in FT are only localized in the frequency domain 
and not in time domain. Therefore, FT only provides 
time-averaged results and extracts details from the 
signal frequency, but loses its time-based informa-
tion (Nalley et al., 2012). The wavelet transform (WT) 
considers such issues by performing decomposition of 
a 1-D signal into 2-D time-amplitude-frequency in-
formation that renders it more effective for analyzing 
non-stationary time series (Karthikeyan and Kumar, 
2013). In WT, variable size windows are employed 
to decompose a time series i.e., narrow windows (at 
lower scales) are used to analyze large periodicities 
or high-frequency components while wide windows 
(at higher scales) are used to analyze low-frequency 
components. Moreover, discontinuities, change points 
and trends are also demonstrated by the WT analysis. 
Results obtained from the trend analysis of different 
periodic components constituted by the WT can be
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Table 1: Key features of the selected meteorological stations.
S. No. Name of Station Period of Record Latitude

(
o
N)

Longitude
(

o
E)

Elevation (m) 
(a.m.s.l.)Temperature Rainfall

1 Cherat (Nowshera) 1960-2006 1961-2010 33o 49′ 71o 33′ 1301
2 Chitral 1964-2003 1964-2010 35o 51′ 71o 50′ 1498
3 D.I. Khan 1960-2003 1960-2010 31o 49′ 70o 56′ 173
4 Dir 1968-2010 1968-2010 35o 12′ 71o 51′ 1369
5 Kakul (Abbottabad) 1960-2010 1960-2010 34o 11′ 73o 15′ 1308
6 Kohat 1961-2010 1961-2010 33o 31′ 71o 27′ 600
7 Parachinar (Kurram) 1960-2003 1960-2009 33o 52′ 70o 05′ 1725
8 Peshawar 1960-2006 1960-2015 34o 01′ 71o 34′ 359
9 Saidu Sharif (Swat) 1974-2010 1980-2010 34o 44′ 72o 21′ 961

Figure 1: Selected meteorological stations (numbered) of PMD in 
UIB.

utilized to identify the periodicities dominating 
and characterizing the trends (Rashid et al., 2015).

Materials and Methods

Study area and data
The study sites include the nine meteorological sta-
tions located in the upper Indus River basin as num 
bered from 1 to 9 in Figure 1 and detail given in Table 
1, referred to as upper Indus basin (UIB), that spreads 
from northeast Afghanistan to Tibetan Plateau, and 
Khyber Pakhtunkhwa province of Pakistan. The UIB 
exists between 32.48o-37.07oN and 67.33o-81.83oE 
covering about 289,000 km2 of area. The Indus basin 
is among the largest basins of the world. The trans-
boundary Indus River basin covers 112 MHa of area 
divided among Afghanistan (6%), China (8%), India 

(39%), and Pakistan (47%). It encompasses 65% Pa-
kistan’s territory (about 52 million Ha), covering full 
areas of Khyber Pakhtunkhwa and Punjab and large 
parts of Balochistan and Sindh (Frenken, 2013).

Data of the two important meteorological variables; 
mean air temperatures (oC) and total rainfall (mm) 
from Pakistan Meteorological Department (PMD) 
for nine stations in UIB was acquired for the current 
research study (Figure 1). The criteria used for select-
ing stations was completeness and availability of the 
required data of at least forty years. The various steps 
involved in the data analyses are depicted in the flow-
chart of Figure 2.

The data was categorized in monthly, seasonal, sea-
sonally-based and annual time series for conducting 
different analyses. In the monthly data, observed val-
ues from January-December were included. The sea-
sonal data included four seasons: (i) winter includ-
ing months from December-February; (ii) Spring: 
March-May; (iii) Summer: June-August; and (iv) 
Autumn: September-November. Each season was 
analyzed separately. The seasonally-based data analy-
sis used the mean/total value of each season every year. 
The effects of the shorter time scales (e.g. intra-annual 
and inter-annual periodicities) on the observed trends 
were investigated by using the monthly data. The ef-
fects of semi-annual and annual seasonality on the 
trends were investigated using seasonally-based time 
series. The annual time-series were investigated for 
longer time scale events like multi-year and decadal.

Homogeneity of data
Use of unreliable climatic data may produce wrong 
conclusions on the climate conditions. It is a difficult 
task while dealing with the meteorological datasets as 
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Figure 2: Flowchart of methodology.

there may be changes in the observational methods 
and measurement procedures, environmental charac-
teristics and structures, and station locations making 
the data inhomogeneous. Therefore, data quality con-
trol and homogeneity tests are conducted to mini-
mize the error. The Pettitt’s test (Pettitt, 1979) was 
selected for this study to check the homogeneity of 
the monthly time series since it is a non-parametric, 
change point detection test and does not require any 
assumption regarding the statistical distribution of 
the data. This test is based on the rank, ri of the ith 
observation of the time series Yi and ignores the nor-
mality of the series. (Equation 1).

Where;
Xy is the Mann-Whitney test statistic, n is the num-
ber of observations and y is the number of years that 
takes values 1, 2, …, n. The break point occurs in year 
k when the estimated value Xk determined using the 
following Statistical Change Point (SCP) test exceeds 
the critical value Kα. (Equation 2).

The values obtained from eq. (2) values were com-
pared with the following critical value Kα at signifi-
cance level α = 5%. (Equation 3).

Autocorrelation
Autocorrelation is an important index to determine 
randomness and cyclic pattern in the data. Random-
ness of data is required by most traditional statistical 
tests. It directly affects the validity of the conclusions 

derived from the tests. Autocorrelation Functions are 
used to determine randomness or similarity between 
original data values and those of the same series but 
lagged at varying time intervals. Autocorrelations 
should be close to zero for all time-lags in order for 
the data to be random. If non-random, then one or 
more of the autocorrelations will be significantly 
non-zero (Box et al., 2015).

Different types of MK tests were applied based on 
the existence of autocorrelation and seasonality in the 
time series. The data was checked for presence of au-
tocorrelation to know whether it is random or not. If 
the data is not random then it increases the chance to 
produce type-1 error due to underestimation of the 
variance (Hamed and Rao, 1998; Yue et al., 2002b). 
Generally, the autocorrelation is more probable in the 
monthly and seasonal time series. The Autocorrela-
tion Function (ACF) at lag-h was determined as fol-
lows (Mohsin and Gough, 2010): (Equation 4).

Where;
R is the ACF at lag-h (h = No. of lags), Ch is the au-
tocovariance function and C0 is the variance function. 
The value of R was checked against the following 
bound at 5% significance level. (Equation 5).

The ACFs were computed at lag-1 (and correlograms 
(Figure 5) showing the relationship between ACFs at 
various lags and the corresponding lags were plotted 
using MATLAB. An autocorrelation plot depicts ei-
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ther a positive or negative correlation in the data or 
shows that a time series is non-random. ACF’s value 
ranges from -1 to 1 showing negative and positive 
autocorrelation, respectively (-1 and 1 being perfect 
autocorrelations). ACF values falling outside the 95% 
bound specify statistically significant values (lag-0 is 
always 1 showing 100% autocorrelation as the value 
is tested against itself ). An autocorrelation with lag-1 
(taken on x-axis) represents the correlation between 
the successive observations of a time series i.e., the 
values and the corresponding values that were ob-
served one time intervals earlier (Anderson, 2015). 
The null hypothesis of independence of data was ac-
cepted if the ACF falls within the above interval in 
the correlograms, and the time series is considered 
random.

Seasonality
A time series has seasonality if different distributions 
exist at different times in a year (Hirsch and Slack, 
1984). The oscillations or seasonality in the data were 
visualized by correlograms of temperature and rain-
fall series. The monthly and seasonal time series and 
detail periodic components are anticipated more to 
have seasonality patterns (Choi et al., 2011) and were 
examined for the existence of seasonality patterns 
through correlograms.

Mann-Kendall Trend Test
The original Mann-Kendal test proposed by (Mann, 
1945) and (Kendall, 1975) was applied to the time 
series without significant autocorrelation in the data. 
It is a rank correlation test for two datasets between 
the rank of the values and the ordered values in the 
dataset. The null hypothesis of the test considers the 
dataset (xh, h = 1, 2, 3, . . ., n) independent and iden-
tically distributed (Yue et al., 2002b). The MK test 

statistic (Kendall’s tau), is given by: (Equation 6).

Where;
xi represents the ordered data values, and n denotes 
the length of observations; the sign test as given by 
(Yue et al., 2002a) is: (Equation 7).

The statistic Sk is normally distributed (approx.) hav-
ing zero mean for n ≥ 10. The mean and variance of 
Sk can be determined by the following equations: 
(Equation 8 and 9).

Where;
th denotes the number of ties to the extent h. The 
standardized test statistic for the MK test can be 
determined by using the relationship given below: 
(Equation 10).

Positive values of Z obtained from eq. (10) represents 
an upward (increasing or positive) and vice versa. The 
Z values were compared with the standard normal 
variate at 5% significance level (Hamed and Rao, 
1998).

Modified Mann-Kendall Trend Test
The original MK trend test is valid for a time series 
that does not demonstrate autocorrelation (Mohsin 
and Gough, 2010). For time series having significant 
autocorrelation, the following formula was devel-
oped by (Hamed and Rao, 1998) developed a formu-
la based on an empirical approximation/experiment, 
which modifies the variance of Sk of the original MK 
test. (Equation 11).
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Where;
n*

e denotes the effective number of samples required 
to account for the autocorrelation in the time series. 
n/(n*

e) is the correction factor associated with the 
autocorrelation of the data. Empirically, n/(n*

e) is ex-
pressed as (Equation 12).

ρe(f ) indicates the significant autocorrelation function 
between the ranks of the data, determined by using 
the inverse of the equation (13) as given by (Kendall, 
1975). This converts the rank autocorrelation into the 
normalized data autocorrelation because for the eval-
uation of the variance S, the estimate of the normal-
ized autocorrelation structure is required for data X 
whose distribution may not be normal or rather arbi-
trary (Hamed and Rao, 1998): (Equation 13).

Seasonal Mann-Kendall Trend Test
The seasonal Kendall test proposed by Hirsch and 
Slack (1984) is suitable for use with data that exhibit 
seasonality pattern and autocorrelation (Kundzewicz 
and Robson, 2004). Using a Monte Carlo experiment, 
Hirsch and Slack (1984) demonstrated that the sea-
sonal Kendall test can be used with data exhibiting 
autocorrelation. Let the matrix x is given as; (Equa-
tion 14).

Matrix x represents a dataset containing observa-
tions taken over “v” seasons for “u” years (without any 
missing values or ties). Another matrix “r”, represents 
the ranks of the data in matrix “x” (Hirsch and Slack, 
1984). (Equation 15).

As the observations within each season are ranked 
among themselves, the ranks (riz) are computed using 
the following equation, and where each column in ma-
trix “r” is a “permutation of (1, 2, …, n)”: (Equation 16).

The test statistics “Sz” is determined (for each season) 
using: (Equation 17).

The test statistics Ss for the seasonal Kendall is deter-
mined by: (Equation 18).

with a variance of (Equation 19).

σ2
z is the variance of “Sz” and represents the covari-

ance of “Sz” and “Sw”. The estimator of the covariance 
is σzw (Dietz and Killeen, 1981): (Equation 20).

Where;
Kzw is represented by: (Equation 21).

and is calculated using: (Equation 22).

If there are no missing observations as well as no tied 
values, rzw is equal to the Spearman’s coefficient of 
correlation for z and w seasons. If we adopt the esti-
mates of σzw to compute the variance then there is no 
need to assume the data as independent. The estima-
tor of the covariance with no missing values becomes 
(Hirsch and Slack, 1984): (Equation 23).

Spectral Analysis using Discrete Wavelet Transform 
(DWT)
Wavelet analysis’ main goal is to get detailed infor-
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mation about the localized and transient phenome-
na happening in the signal at various temporal scales 
(Labat, 2008). There are two types of wavelet analy-
ses viz. discrete and continuous wavelet analysis. The 
continuous wavelet analysis is used to get information 
about the scale (frequency) of a signal and the way the 
components vary in time. While the discrete wave-
let analysis is employed to decompose a signal into 
sub-signals by using a proper wavelet and decompo-
sition level. Most of the meteorological elements are 
observed or measured at a discrete interval and as-
suming the non-linear trends occurring gradually and 
lying in the low-frequency (deterministic) modes of 
the time series, these were converted into high- and 
low frequency components by employing the discrete 
wavelet transform. The discrete wavelet transform of a 
finite series f(t) at discrete integer time step by using a 
suitable mother wavelet ψ(t) and decomposition level 
j is given by (Partal and Küçük, 2006): (Equation 24, 
25 and 26).

Integers j and k represent the scaling (dilation) and 
translation (time position) factors, respectively, a0 is 
the specified dilation step; whose value is constant 
and greater than 1, b0 is the location variable (b0 > 
0), Ψ represents the mother wavelet while Wf (j, k) 
denotes the discrete wavelet coefficient under scale j 
and translation k. Practically, the orthogonal DWT 
(i.e. dyadic) in eq. (26) is utilized by putting: a0= 2 and 
b0 = 1 (Daubechies, 1992): (Equation 27).

The dyadic (integer power of 2; 2n) DWT decomposes 

a series into a series of “Approximation” and “Detail” 
coefficient sets (sub-signals) under each level which 
reveal the variation of the original signal at different 
scales and locations. These sub-signals may represent 
deterministic components and noise and summing 
to the original series. The maximum Decomposition 
Level L in dyadic DWT for each time-series was cal-
culated as (Pandey et al., 2017b): (Equation 28).

L: Maximum decomposition level; N: No. of re-
cords in the data; v: No. of vanishing moments of a 
Daubechies wavelet (= half the filter length).
Daubechies (db5) Mother Wavelet having a 10-point 
filter length was chosen for decomposition of the 
signal (i.e. observed data) due to their orthogonali-
ty, compact support, and ease of use (Vonesch et al., 
2007) indicating that the wavelets possess non-zero 
basis functions over a finite interval as well as transla-
tional orthonormality properties and full scaling.

Sequential Mann-Kendall Analysis
The Sequential MK Rank analysis identifies the most 
influencing periodic components that characterize 
the observed trends (Sneyers, 1990). It creates a pro-
gressive series 𝑢(𝑡) and a backward series u′(𝑡). The 
test Statistic ti is determined as (Equation 29).

The mean 𝐸(𝑡) and variance var(𝑡𝑖) for ti are deter-
mined as: (Equation 30 and 31).
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The progressive value is determined as; (Equation 32).

The sequential Mann-Kendall values of each of the 
detail components plus approximation were plotted 
against the sequential Mann-Kendall values of the 
observed data. The bounds in the plots show the con-
fidence limits of the standard normal score “Z” values 
at α = 5% in the sequential MK plots. Therefore, these 
limits correspond to ±1.96. A significant trend is in-
dicated at α = 5% if the progressive MK value goes 
beyond the upper or lower C.I.; a significant positive 
trend if the upper limit crossed and vice versa. 

Table 2: Results of the petitt homogeneity test for mean 
monthly temperature series.
Meteorological Station p Value Change Point at Year
Abbottabad 0.255 1972
Chitral 0.919 1998
D. I. Khan 0.994 1998
Dir 0.800 1998
Kohat 0.790 1984
Nowshera 0.174 1974
Parachinar 0.134 1991
Peshawar 0.822 1984
Swat 0.897 1999

Table 3: Results of the pettitt homogeneity test for total 
monthly rainfall series.
Meteorological Station p Value Change Point at Year
Abbottabad 0.177 1971
Chitral 0.043*↑ 1985
D. I. Khan 0.125 1989
Dir 0.166 1979
Kohat 0.250 1997
Nowshera 0.651 1978
Parachinar 0.003*↓ 1966
Peshawar 0.001*↑ 1989
Swat 0.494 1992

* significant shift (↑ upward or ↓ downward) at 5% significance level

Most Influential Periodic Components Affecting Trends
The periodic components (periodicities) that were 
dominant in characterizing the trends over the study 
area were found firstly by comparing the MK-Z val-
ues of the observed data with their respective detail 
plus approximation components. Secondly, by plot-
ting the sequential MK values of the detail plus ap-
proximation components along with sequential MK 
values of the observed series and looking for the simi-

larity between the progressive trends of the two plots. 
Nalley et al. (2012) found that the results obtained 
after combining the detail components were not al-
ways conclusive. Hence, individual detail components 
(plus last approximation) were chosen for the sequen-
tial MK analysis. Also, since the approximation peri-
odic components are representative of the large-scale 
variability (i.e. trends) (Kallache et al., 2005), it makes 
sense to add them to the detail periodicities prior 
to applying the appropriate MK test. This provided 
clearer information about the most dominant perio-
dicities affecting the trends.

Results and Discussions

Homogeneity of Data
Homogeneity of the data used in this study was 
checked by applying the two-tailed Pettitt’s test at α = 
5%. The two-tailed Pettitt’s test p values for the mean 
monthly temperature and total monthly rainfall are 
tabulated in Table 2 and 3, respectively.

The results of the Table 2 show that the time series 
of the mean monthly temperatures of all stations are 
homogeneous at α = 5%. For total monthly rainfall, 
significant upward shifts in the mean values were ob-
served at the stations Chitral (mean “mu” value in-
creased from 33.40 mm to 42.34 mm after the year 
1985) and Peshawar (mean increased from 31.72 mm 
to 41.13 mm after the year 1995) showing inhomo-
geneities and significant monotonic trend tendency 
in the data (Figure 3). At the station Parachinar, a 
significant downward shift occurred in 1966 and 
the mean value decreased from 117.07 mm to 61.24 
mm as shown in Figure 4. The quality and quantity 
of observed data (e.g., absence of in situ observations, 
measurement errors, and space–time discontinui-
ties) restrict reliable estimates of high-altitude pre-
cipitation climatologies and quantities in the Indus 
basin. Dahri et al. (2018) reported that till 1969, the 
non-recording Symon’s gauge was most extensively 
used to measure rainfall in India. Afterwards, Bureau 
of Indian Standards adopted the Indian standards 
for design and manufacture of meteorological equip-
ment, with the Indian rain gauge (20-22-P) being the 
most widely used. Similarly, PMD has mostly used 
the non-recording rain gage model MK2 (13-15-C). 
Then, in 2010, PMD began using tipping bucket rain 
gage. WAPDA is using both automatic weighing, and 
standard meteorological service manual rain gages. 
At high altitudes, WAPDA has also installed 20 au-
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tomatic data collection platforms that employ snow 
pillows for the measurement of both solid and liquid 
precipitation as water equivalent. Although no solid 
reason was found for inhomogeneity in the observed 
data of rainfall of the above stations but the changes 
in the measuring instruments and units reported by 
Dahri et al. (2018) could effectively shift the mean 
values for the long-term data used in this study. The 
inhomogeneous data was corrected using double mass 
analysis before further use.

Figure 3: Inhomogeneity in the data due to significant upward shift 
at the change point.

Autocorrelation and Seasonality
The monthly temperature data of all the selected 
meteorological stations showed significant autocor-
relation coefficients at lag-1 at 5% significance lev-
el which indicated that the observations within the 
time series were not random and independent. The 
autocorrelation analysis of the time series of seasonal 
and annual datasets of temperature showed that the 
ACFs for winter season were only significant for sta-
tion Abbottabad. Similarly, ACFs for spring season 
were found significant only for stations Abbottabad 

and Parachinar. Four stations, Chitral, D.I. Khan, 
Peshawar and Swat did not exhibit significant auto-
correlation for the summer temperature series while 
except stations Chitral, D.I. Khan, Dir and Swat all 
other showed significant autocorrelation for the au-
tumn temperature series. For the annual temperature 
series, no significant autocorrelation was found for 
Chitral, D.I. Khan, Kohat and Swat stations.

The lag-1 ACFs for the different temperature time 
series used in this research study are presented in Ta-
ble 4. The autocorrelation charts for all the monthly 
temperature series showed repeated fluctuations, and 
thus, strong seasonality patterns. Semiannual and an-
nual seasonality patterns were very strongly visible 
in all the monthly data as high ACFs were found at 
every 6th lag as shown in Figure 5.

Figure 4: Inhomogeneity in the data due to significant downward 
shift at the change point.

Each of the monthly, seasonally-based, and annual 
time series for total rainfall was tested for autocorrela-
tion to determine the existence of non-random char-
acteristics at lag-1 and to see repeated fluctuations for 
assessing seasonality patterns. The ACF values for the 
monthly, seasonally-based, and annual time series of 
the rainfall are given in Tables 5 and 6, respectively.

It is evident from the above Tables 5 and 6 that the 
autocorrelation in the monthly data is more pro-
nounced as compared to that of the seasonally-based 
data for total rainfall. The seasonality patterns were 
also visualized and determined from the respective 
correlograms. Seasonality was found in all monthly 
and seasonally-based data. The presence of strong 
annual cycles was visible and evident from the high 
coefficients in correlograms, which were repeating at 
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Table 4: Lag-1 autocorrelation functions (ACFs) of the observed temperature time series for selected meteorological 
stations.
Station Monthly Winter Spring Summer Autumn Annual
Abbottabad 0.83* ᴪ 0.30* 0.31* 0.45* 0.39* 0.63*
Chitral 0.85* ᴪ 0.28 0.25 -0.09 0.27 0.17
D. I. Khan 0.83* ᴪ 0.08 0.13 0.19 0.12 0.15
Dir 0.84* ᴪ 0.26 0.23 0.34* 0.06 0.44*
Kohat 0.83* ᴪ -0.10 0.18 0.38* 0.30* 0.21
Nowshera 0.81* ᴪ 0.07 0.16 0.45* 0.45* 0.50*
Parachinar 0.82* ᴪ 0.02 0.36* 0.55* 0.59* 0.51*
Peshawar 0.84* ᴪ -0.03 0.27 0.09 0.32* 0.17*
Swat 0.84* ᴪ 0.11 0.15 -0.03 0.21 0.25

* significant serial correlation at lag-1 at 5% significance level; ᴪ presence of seasonality.

Figure 5: Lag-1 autocorrelation functions of the monthly tempera-
ture series.

every twelfth lag for monthly time series and every 
fourth lag for seasonally-based time series. The in-
fluence of this yearly cycle on trends is more promi-
nent in the seasonally-based discharge, where the 2nd 
level of dyadic decomposition (D2) represents the 
12-month dominant periodicity.

Significance of trends in the Observed Time Series
The different versions of MK trend tests were applied 
considering the results of the autocorrelation and sea-
sonality to inspect the existence of significant trends 
in the observed time series and the detail and approx-
imation periodic components extracted by using the 
discrete wavelet transform. The original MK trend test 
(Mann, 1945; Kendall, 1975) was selected for those 
time series which neither exhibited significant auto-
correlation at lag-1 nor seasonality patterns. The mod-
ified version of the MK trend test (Hamed and Rao, 
1998) was used for all those time series which showed 
significant autocorrelation at lag-1 without seasonal-
ity patterns. The modified MK trend test (Hirsch and 
Slack, 1984) was applied to monthly and seasonal-
ly-based time series showing a seasonality pattern. The 
results of the different types of the MK tests applied 
on the various time series of temperature and rain-
fall are presented in the Tables 6 and 7, respectively.

Table 5: Lag-1 autocorrelation functions (ACFs) of the 
observed rainfall time series for selected meteorological 
stations.
Station Monthly Seasonally-Based Annual
Abbottabad 0.18* ᴪ -0.17* ᴪ -0.12
Chitral 0.42* ᴪ 0.08ᴪ 0.61*
D. I. Khan 0.25* ᴪ 0.11ᴪ 0.54*
Dir 0.20* ᴪ -0.02ᴪ 0.35*
Kohat 0.18* ᴪ 0.06ᴪ -0.67*
Nowshera 0.16* ᴪ 0.08ᴪ -0.12
Parachinar 0.30* ᴪ 0.19* ᴪ 0.40*
Peshawar 0.16* ᴪ 0.06ᴪ 0.15
Swat 0.21* ᴪ -0.06ᴪ 0.60*

* significant serial correlation at lag-1 at 5% significance level; ᴪ pres-
ence of seasonality
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Mean Air-Temperature Trends
The climatic condition of the study area was found 
highly diverse in terms of mean temperatures. It is ev-
ident from the MK-Z values as tabulated in the above 
Table 6 that mixed trends (i.e. both positive and neg-
ative) were observed for temperature data in different 
seasons of the selected stations. For the monthly tem-
perature data, only stations Nowshera and Parachinar 
exhibited significant negative trend while only station 
Peshawar experienced a significant positive trend. For 
winter temperature series, stations Chitral, Dir, Ko-
hat and Peshawar showed significant positive trends 
while stations Nowshera and Parachinar showed sig-
nificant negative trends. During spring season, only 
Kohat and Peshawar stations experienced significant 
positive trends, while only stations D.I. Khan, Now-
shera and Parachinar showed significant trends dur-
ing summer season. For the autumn data series, only 
station Nowshera’s time series exhibited a significant 
negative trend. In the annual series, only Kohat and 
Peshawar stations showed increasing trends while 
stations Nowshera and Parachinar experiences de-
creasing trends.

Table 6: MK-Z Values of the mean temperature series.
Station Monthly Winter Spring Summer Autumn Annual

Abbotta- 
bad

-1.82 -0.37 -0.04 -1.14 -1.35 -0.96

Chitral 1.36 3.41* 1.29 -1.57 0.83 1.36
D.I. Khan -0.17 1.02 0.33 -2.09* -0.21 -0.25
Dir 1.54 2.45* 1.53 -0.92 -0.06 1.09
Kohat 1.48 2.20* 2.25* 0.00 0.54 1.97*
Nowshera -4.63* -2.13* -1.30 -3.67* -5.17* -5.70*
Parachinar -3.77* -2.52* -1.30 -3.87* -1.94 -2.65*
Peshawar 2.95* 2.64* 2.99* -1.34 1.79 2.73*
Swat 0.91 1.52 1.83 -0.63 0.04 1.46

* significant trend at α = 5%.

Total Rainfall Trends
The rainfall trends found in the different time series 
categories are given in Table 7. The temporal distri-
bution was found highly variable during different 
seasons in the study area. Most of the trends were 
found non-significant at α = 5%. For the monthly 
rainfall data, positive trends were found for all select-
ed stations (including significant trends for stations 
Chitral, and Peshawar only) except for stations Now-
shera, Parachinar and Swat having weak negative 
trends. Similarly, only stations Nowshera and Para-
chinar showed negative trends for seasonally-based 

data while other experience positive trends including 
significant trends for stations Peshawar, D.I. Khan, 
and Chitral. For the annual season, only three stations 
Peshawar, D.I. Khan, and Chitral showed significant 
positive trends.

Table 7: MK-Z Values of the total rainfall series.
Station Monthly Seasonally-Based Annual
Abbottabad 0.63 0.63 -0.11
Chitral 3.90* 6.21* 3.16*
D. I. Khan 1.94 9.17* 5.36*
Dir 0.47 0.80 0.81
Kohat 0.24 0.21 0.51
Nowshera -0.22 -0.22 -0.17
Parachinar -1.42 -1.34 -1.49
Peshawar 2.94* 2.87* 2.57*
Swat -0.18 0.21 0.50

* significant trend at α = 5%.

Figure 6: Decomposition of station Abbottabad’s monthly mean 
temperature series.
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Table 8: Dominant periodicities for various mean temperature series.
Series Peshawar Chitral D. I. Khan Abbottabad Dir Kohat Nowshera Parachinar Swat
Monthly 2.95* 1.36 -0.17 -1.82 1.54 1.48 -4.63* -3.77* 0.91
D3+A6 - -0.85 - - - - - - 0.58
D3+A7 1.16 - -3.11* -2.58* 0.62 -0.04 -5.99* -4.37* -
Winter 2.64* 3.41* 1.02 -0.37 2.45* 2.20* -2.13* -2.52* 1.52
D1+A3 2.99* 3.58* 0.90 -0.41 - 2.21* -2.49* -2.44* 1.50
D2+A3 - - - -0.09 2.77* 1.65 - -2.05* -
Spring 2.99* 1.29 0.33 -0.04 1.53 2.25* -1.30 -1.30 1.83
D1+A3 4.14* - -0.17 -0.10 1.28 2.90* -1.98* -1.31 2.68*
D2+A3 - 1.54 - - - 2.28* -1.31 -1.40 -
Summer -1.34 -1.57 -2.09* -1.14 -0.92 0.00 -3.67* -3.87* -0.63
D1+A3 -1.80 -2.02 -2.09* -0.92 -1.73 -0.46 -6.15* -3.31* -0.09
D2+A3 - - - - - - - - -0.64
Autumn 1.79 0.83 -0.21 -1.35 -0.06 0.54 -5.17* -1.94 0.04
D1+A3 3.58* 0.99 -1.45 -1.34 - - - - 0.04
D2+A3 - - - - -0.34 0.35 -6.95* -1.91 -0.13
Annual 2.73* 1.36 -0.25 -0.96 1.09 1.97* -5.70* -2.65* 1.46
D1+A3 3.39* 1.90 -1.06 - - - -5.76* - 1.92
D2+A3 - - - -0.60 0.94 1.64 -4.71* -2.92* -

Spectral Analysis using Discrete Wavelet Transform 
(DWT)
The MATLAB’s multilevel one-dimensional (1-D) 
wavelet decomposition function was used to per-
form the discrete wavelet analysis on each time series 
because the mean air-temperature and total rainfall 
were one-dimensional. The monthly and the season-
ally-based time series included large number of val-
ues. Using db5 as the mother wavelet and eq. (28), all 
monthly temperature and rainfall time series were de-
composed into seven decomposition levels (D1–D7) 
and one approximation level (A7) based on the data 
length as there were more than 512 (i.e. 29) data points 
that shifted the dyadic scale to next level i.e. 210 except 
for two stations Chitral and Swat which were decom-
posed into six levels (D1–D6) as their data length was 
less than 512. An example of the multilevel 1-D de-
composition for the monthly mean temperature data 
of station Abbottabad is presented in Figure 6. Simi-
larly, the seasonal time and annual series for temper-
ature and rainfall were decomposed into three detail 
(D1–D3) and one approximation (A3) levels with an 
exception for station swat whose annual total rainfall 
series contain two decomposition levels. The season-
ally-based time series for rainfall was decomposed 
into five detail (D1–D5) and one approximation 
(A5) components except for station Swat having four 
decomposition levels. Since, the wavelets were pro-

duced at dyadic (2n) scales, therefore, D1 represents 
the 2-unit (a unit be either a month, season or year 
depending upon the category of the time series) time 
periodicity; D2 represents the 4-unit, D3: 8-unit; D4: 
16-unit; D5: 32-unit; D6: 64-unit; and D7 represents 
128-unit periodicity.

Dominant Periodicities Affecting Trends
The dominant periodicities affecting the trends were 
determined firstly by applying the suitable versions of 
MK tests using XLSTAT and secondly by performing 
sequential MK analysis and observing the similarities 
between the progressive trend plots of the observed 
series and those of the detail plus last approximation 
components. It is illustrated in Figure 7 that how the 
most dominant periodicities affecting trends were de-
termined graphically by visualizing similarity in the 
progressive trends. The sequential values are impor-
tant to be analyzed because a time series may contain 
a mixture of positive and negative trends which may 
cancel each other and finally produce a non-signifi-
cant trend value.

The MK analysis performed on the detail (D) and 
approximation (A) periodic components that were 
extracted from the monthly mean temperature se-
ries by DWT showed that two detail components 
(D5 and D6) of station Chitral having MK-Z trend
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Figure 7: Most dominant periodicities affecting trends of monthly mean temperature series.
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values -2.08 and 2.00, respectively, were found signifi-
cant. But after adding the approximation components 
of the last decomposition level to the detail compo-
nents and testing the resultant series with MK tests, 
most of the trend values for various stations became 
statistically significant. The comparison of trend val-
ues of the observed time series with those of the re-
sultant series (detail + approximation components) 
as well as the results of the sequential MK analysis 
showed that the 8-monthly periodicities (D3) domi-
nated the trends, as given in Table 8.

Analysis of temperature trends in winter shows that 
winter has experienced warming trends in most of 
the stations having significant positive trend values 
as shown in Table 6 and 8. These results agree with 
the results of (Khattak et al., 2011; Hussain et al., 
2021). The plots of the sequential MK analysis and 
comparison of the trend values showed that the win-
ter’s temperature trends of most of the stations were 
affected by 2-yearly (D1) periodicities except station 
Dir \whose dominant periodicity was D2 (4-yearly). 
D2 was also found the most dominant periodicity for 
stations Abbottabad, Kohat and Parachinar, which 
represents the 4-yearly cycle. For spring temperature 
series, only two stations Peshawar (+2.99) and Kohat 
(+2.25) experienced significant increase in the mean 
temperatures as given in Table 6. The D1+A3 i.e. 
2-yearly periodicity has been found most effective and 
dominating the spring temperature except for station 
Chitral which is dominated by D2 (plus A3) repre-
senting 4-yearly cycle. Table 8 shows that the stations 
Kohat, Nowshera and Parachinar were also affected 
by the 4-yearly periodicity. The results of the MK tests 
showed that all stations have experienced negative 
trends for summer temperature including significant 
decreasing trends for D.I. Khan, Nowshera and Para-
chinar stations which showed that the summer mean 
temperatures have been decreased over the study peri-
od. Significant cooling of the summer season has also 
been reported by (Khattak et al., 2011; Hussain et al., 
2021). It is evident from the sequential MK plots that 
D1+A3 components representing 2-yearly periodic-
ities were in harmony with those of their respective 
observed time series. For station Swat, the 4-yearly 
cycle (D2+A3) along with D1+A3 was also affecting 
the summer temperature trends as evident from Table 
8. The result showed that the most dominant perio-
dicities characterizing the trends of autumn temper-
ature were varying spatially in the study domain. It 
was found that the periodicity D1 (2-yearly) and D2 

(4-yearly) were the most dominating periodicities. 
The station Swat was affected by both D1 and D2, 
showing more variability in the trends. The analysis 
of seasonal mean temperatures presented above clear-
ly show warming over the sites as significant positive 
trends dominated on their negative counterparts, es-
pecially in the seasons of winter and spring as given 
in Table 6.

The annual mean temperature time series was inves-
tigated to achieve a detailed analysis. It was found 
that the addition of approximation components to 
the detail components increased the values of trends. 
Two stations, Peshawar and Kohat showed signifi-
cant warming while only two stations Nowshera and 
Parachinar experienced significant decreasing trend 
values. The 2-yearly (D1) and 4-yearly (D2) perio-
dicities were found dominant in affecting the annual 
temperature trends as shown in Table 8. The annual 
trends were found mostly consistent with monthly 
and seasonal trends except for station Dir whose an-
nual trend seems to be a result of negative and positive 
seasonal trends.

For the monthly rainfall data, only stations Pesha-
war and Chitral showed significant positive trends 
for the observed data as given in Table 7. Similarly, 
only the periodic component D7 and D4 showed sig-
nificant values for stations Chitral and Swat, respec-
tively. But after adding the approximation component 
of the signals to their respective detail components, 
several MK-Z values became statistically significant. 
The results given in Table 9 also indicate that the de-
tail components are affected by their approximation 
counterparts as the later increased their values and 
made them statistically significant (in most of the cas-
es). This showed that the approximation component 
of the wavelet analysis contained the trends and that 
the trends changed slowly and gradually. The results 
of the MK tests and sequential MK analysis showed 
that for most of the stations, 8-monthly (D3+A3) 
and higher periodicities were influential on the trends 
while for stations Abbottabad, Dir, Kohat and Swat 
4-monthly periodicities were also found dominant as 
given in Table 9.

The seasonally-based total rainfall time series was in-
cluded in this study because annual cycles were iden-
tified in the monthly time series investigations. It also 
validated the existence of annual oscillations in the data 
sets as the autocorrelation function showed maximum 
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Table 9: Dominant periodicities for various total rainfall series.
Series Peshawar D. I. Khan Abbottabad Dir Kohat Nowshera Parachinar Chitral Swat
Monthly 2.94* 3.90* 1.94 0.63 0.47 0.24 -0.22 -1.42 -0.18
D2+A7 - - - -0.67 0.38 1.12 - - -0.51
D3+A7 5.07* 4.19* 4.06* - - - 0.66 -3.50* -
Seasonally-based 2.87* 6.21* 9.17* 0.63 0.80 0.21 -0.22 -1.34 0.21
D1+A5 0.84 5.59* - - 1.65 - -1.65 -3.05* 0.12
D2+A5 - - 6.31* 0.69 - -0.39 - - -
Annual 2.57* 3.16* 5.36* -0.11 0.81 0.51 -0.17 -1.49 0.50
D1+A3 3.23* 3.44* 3.93* - 1.02 - -2.72* - -
D2+A3 - - - -2.28* - 0.52 - -0.77 -
D3+A3 - - - - 0.86 0.51 - - -

values at every 4th lag. These oscillations did not weak-
en over time. Cyclic patterns were also found at high-
er levels of decomposition, but they got weakened 
with increasing number of lags. The repeated cycles 
observed for the lower levels of decomposition were 
obvious as they captured the oscillating characteristics 
(seasonality), and thus, filtered the stochastic compo-
nents of the time series. Positive trends were detect-
ed in the original seasonally-based series except for 
Nowshera and Parachinar stations; three stations also 
experienced significant increasing trends i.e. Pesha-
war (+2.87), Chitral (+6.21), and D.I. Khan (+9.17) 
as given in Table 7. It was found that 6-monthly and 
1-yearly periodicities (D1 and D2) have contributed 
to the trend formation in the long-term rainfall data 
as given in Table 9.

For annual total rainfall series, three stations: Pesha-
war (+2.57), Chitral (+3.16), and D.I. Khan (+5.36) 
experienced significant positive trend values. All other 
stations showed non-significant trend values for the 
observed data as given in Table 7. It is obvious from 
Table 9 that the decomposition levels of the dominant 
periodicities who are the major contributors in affect-
ing the annual total rainfall are not uniform. The most 
common influential periodic components are D1 and 
D2 (plus their approximations). This indicates that 2- 
to 4-yearly periodic events (interannual fluctuations) 
have characterized the trends of annual rainfall of the 
selected stations. Two stations, Dir and Kohat were 
also found affected by 8-yearly rainfall cycles.

Conclusions and Recommendations

The current research study finds the transformation 
of the meteorological time series using discrete wave-
let transform very effective in extracting the hidden 

information from the data which is otherwise not 
visible in the raw data. Thus, trends and the dominant 
periodicities are determined precisely. The findings re-
vealed that the temperature trends were governed by 
the resultant of summer and winter trends. The high-
er-resolution data (mean monthly temperatures) were 
influenced by intra-annual periodicities of 8-months 
periods. The lower-resolution data (seasonal and an-
nual temperatures) were highly affected by multiyear 
periodicities mostly ranging from 2- to 4-years. The 
MK analysis on seasonal data showed that the winters 
have experienced significant warming over the study 
area except for stations Nowshera and Parachinar 
while summers have experienced decreasing tempera-
ture trends. Rainfall trends were mostly dominated by 
positive trends. The monthly data was dominated by 
intra-annual periodicities ranging from 2-8 months. 
The seasonally-based and annual data were highly in-
fluenced by multiyear periodicities ranging from 2-4 
years, and 2-8 years, respectively.
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trends in the observed data only without exploring 
the root causes for their development. However, for 
efficient and effective management of water resourc-
es, time periodicities which are hidden in the raw data 
need to be detected to determine the time scales re-
sponsible for the development of trends and to ana-
lyze their long-term behavior. In this study, the his-
torical climatic data of the selected stations have been 
used to assess the trends not only in the observed data 
but also in its periodic components by decomposing 
it at different scales using discrete wavelet transform. 
In this way, hidden information about the time pe-
riodicities that govern the climatic trends have been 
revealed. In contrast to previous research on the Indus 
basin that have mostly involved traditional methods 
for trend detection, three different versions of the 
Mann-Kendall trend test were applied to the data 
(both observed and decomposed) that dealt with all 
kind of limitations in the data like autocorrelation 
and seasonality without using the conventional pro-
cedures of prewhitening and detrending. Significant 
periodic modes were also cross-checked by applying 
the sequential Mann-Kendall analysis to ensure the 
accuracy of the results.
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