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Introduction

The recent Earth’s topography is a result of the 
growing control of soil development, ecologi-

cal, geomorphological, geological and hydrological 
actions. The natural landforms are diverse in terms 
of their distinctiveness, such as relative spatial loca-
tions, sizes, orientations, relative reliefs and shapes. 
These landforms are dissimilar due to their physical 
properties that lead to their developments which 

persevere their reactivation in recent times (Mac-
Millan and Shary 2009; Mahmood and Gloaguen, 
2011; Mahmood and Gloaguen, 2012). Consequent-
ly, the quantitative explanation and classification of 
the topography is an important part of investigating 
landforms. The essential assumption in geomorpho-
metry demonstrates a correlation among topographic 
characteristics and associated processes (Pike, 2000; 
Burbank and Anderson, 2001; Keller, 1986; Keller 
and Pinter, 2002; Wobus, 2006; Qureshi et al., 2019; 
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Amine et al., 2020). DEM derived datasets of mor-
phometric indices assess this correlation, their re-
lation to geomorphological processes, soil charac-
teristics or the subsistence of exact landforms using 
geostatistical techniques (Pike, 2000; Shahzad et al., 
2009; Mahmood and Glaoguen, 2011). TSR pre-
serves important topographic information compared 
to other morphometric measures, as it corresponds to 
the texture of the topography, which is described as 
topographic variations in elevations (Shahzad et al., 
2009; Mahmood and Gloaguen, 2011). 

According to (Olaya, 2009) and (Hobson, 1972), 
TSR is a significant index used in the planetary and 
Earth sciences to distinguish distinctive landforms 
and computation of active deformation as a result of 
endogenic and exogenic agents causing. For exam-
ple, TSR-age correlation was performed by (Mckean 
and Roering, 2004) to distinguish landslides events 
in different epochs, together with factorization of 
hydrological models for stream network. Therefore, 
TSR for a landform depends on the physical charac-
teristics of the dynamic processes of the Earth surface 
and the time-lapse since it was created. A different 
implication of TSR is not possible (Hobson, 1967), 
as various types of investigations require different 
constraints. For example, TSR in the context of re-
mote sensing may be calculated using reflection of 
electromagnetic radiation from Earth’s topography 
that ranges between specular to diffuse. In geomor-
phological investigations (Olaya, 2009; Pike et al., 
2000; Shahzad et al., 2009; Mahmood and Gloaguen, 
2011), TSR is described as topographic variations 
in elevation levels and is used to classify landforms 
over various regional and local scales. This research 
treats TSR as variability in topographic elevations in 
view of neotectonic deformation at regional or large 
scales, whilst the scale of study is determined by the 
geomorphometric features or landform size under in-
vestigation. DD provides evidence for fault activation, 
hydrologic information and topographic evolution 
that is difficult to obtain by conventional geological 
published maps. According to (Leeder and Jackson, 
1993; Jackson and Leeder, 1994; Jackson et al., 1996, 
1998; Hovius, 1996), important information of active 
structures is preserved in the streams network associ-
ated with neotectonics. Arithmetical simulations of 
stream types can provide significant imprints (Tom-
kin and Braun, 1999). Previous researches of spatial 
drainage patterns were carried out in neotectonically 
deformed regions that caused relative regional up-

lifts and subsidence (Burbank and Anderson, 2001; 
van der Beek et al., 2002; Delcaillau et al., 2006). The 
spatial locations of the drainage system are associat-
ed with minor uplifts or subsidence in the context of 
topographic deformation. For example, streams may 
be clustered, forked or fluctuate flow directions while 
crossing over the faults (Leeder and Jackson, 1993; 
Han et al., 1994; 1995; 1998). Non-tectonic agents 
can contribute and organize the different types of 
stream networks and their establishment (Ouchi, 
1985; Mueller and Talling, 1997; Gupta, 1997; Pelle-
tier, 2004; Vetel et al., 2004). As DD corresponds to a 
standard normal value per unit area, assigning an ex-
plicit threshold value, DD reduces the control of the 
non tectonic dynamics. Quantitatively, DD provides 
clear information regarding the distribution of spatial 
drainage patterns. Variations of DD values, from low-
er to higher can therefore be simply recognized both 
in numeric and map form by assigning diverse colours. 
The principal purpose of this study is to demarcate 
the spatial patterns of tectonic surface deformation 
including, top-hydrological factors, geological and 
geomorphic landforms based on the TSR and DD 
investigation to decode current neotectonic signs of 
scheming landforms developments that is not marked 
in published geological, geomorphological maps. Due 
to this rationale, we focused on NPS and its environs 
to differentiate the variations in surface deformation 
resulting from the relentless contest between hydro-
logical factors, erosion, tectonics and climate change 
impact on topography in the context of ongoing col-
lision between InoPak-Eurasian Plates (Figure 1). 

Figure 1: Regional tectonic framework (Hindu Kush-Karako-
rum-Himalaya) with red block representing the investigation site. 
Sources: (Lawrence et al., 1981; Wheeler et al., 2005; Mahmood and 
Gloaguen, 2011; 2012).
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Geotectonic Settings
The NPSgneisses belong to the NW of the flank of 
Himalayan bare rocks. They are intensely buried ma-
terial underneath overriding Eurasia (Butler and Pri-
or, 1989) as an early part of the continental collision 
history (Figure 2). Two different suites of meta-sed-
iments have been documented. A chain of localized 
limestones, pelites, psammites and migmatised rocks 
has lounged inside the main body of the gneisses that 
demonstrate tectonic frameworks and poly-phase 
metamorphism (Misch, 1964). 

Figure 2: Geotectonic map of the NPS region.

Improbably, the high graded metamorphism Himala-
yas has spoiled any fossil verification to embrace this 
idea. The Indus Suture Zone (ISZ) and its hanging 
wall incorporate a complex relic arc, known as Indus 
Kohistan Terrane (Le Fort, 1986; Butler and Cow-
ard, 1989), which docks the Asian plate extremities 
in the late Cretaceous and is an associated segment 
of the NW wedge the Tertiary Himalayan collision. 
The MMT is a high-grade shear region with over-
riding Asia over NPS from the eastern side and on 
isolated segments of the west most peripheries. The 
past earthquake records in the NPS region show sig-
nificant influence on the River Indus that exhibits 

enhanced variations of gradients symptomatic of ne-
otectonic deformation (Figure 3). 

Figure 3: Tectonic map of the investigation site of NPS and sur-
roundings showing regional published and automatically extracted 
lineaments and historical shallow earthquakes with magnitude > 3.5.

Datasets and procedures
SRTM DEM (90 m) based generated stream net-
work was used to prepare a binary digital image, and 
sinks were removed by DEM filling technique. The 
D8 script (O’Callaghan and Mark, 1984; Jenson and 
Domingue, 1988) computes the final flow angles at 
every DEM pixel with eight neighboring pixels (Fig-
ure 4). The stream network was further filtered to de-
scribe the drainage channels with a contributory area 
> 1 Km2 to guarantee those topographic segments 
where organized Stream flows take place to avoid 
hillslope dispersal. We used channels with Strahler 
order six to minimize the DEM noise. For the extrac-
tion of stream network, the threshold limit here is de-
fined as the least amount of water needed to generate 
a stream and based on this threshold, the stream defi-
nition is ensured following the flow direction grids as 
shown in Figure 4.

Topographic Surface Roughness (TSR)
Asymmetrical topographic variations in a region of 
active Folds and Thrust Belts (FTBs) may be used 
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to determine geotectonic activities (Day, 1979). The 
TSR corresponds to the deviations from scalar av-
erage planes to the vector standard planes. In neo-
tectonically deformed regions, TSR reveals very high 
values as the areas of the surface average plane and 
vector standard plane demonstrate highly inconsist-
ent behaviour. Previous studies propose that TSR is a 
strong surface dynamic index that is quite capable of 
investigating the morphotectonic characteristics of a 
deformed region (Grohmann, 2009; Mahmood and 
Glaoguen, 2011). Within a grid square, TSR is a ratio 
among the relatively flat region with the actual exist-
ing real surface. The grid square size is set as input by 
the user and may be changed depending upon DEM 
spatial resolution and the nature of the investigation 
region. The geographical and mathematical relation-
ship between the flattened and real surface area is il-
lustrated in Figure 5. 

Figure 4: The illustration is showing the D8 algorithm for the cal-
culation of flow angles and stream definition by assigning a specific 
threshold of 1, 3 pixels as per requirement in the context of contrib-
uting areas (O’Callaghan and Mark, 1984; Jenson and Domingue, 
1988).

Figure 5: The mechanism showing the computation of topographic 
surface roughness (TSR), (Grohmann, 2009).

Drainage density (DD) 
DD (ρ) is defined as the summing up the entire length 
of all drainage networks per unit of the basin. In this 
research, DD is computed as shown in (Figure 6).

Figure 6: Illustration showing computation of DD.

…(2)

Ls
i corresponds to the length of all the streams, and 

S stands for the entire region enclosed by the roving 
window. Calculation of DD is based on the vector 
model, so it is impossible to accord with lake volume 
data in plan form as it may designate the sinking 
areas, whereas a lake may well exist as a depression 
regime influenced by an active fault line (Han et al., 
1995). Consequently, it is compulsory to deem lake 
volume area during the calculation of DD to probe 
the effects of vertical tectonic block development. We 
consider lakes as a site of channels regions with high-
er DD values. DD corresponds to the topographic 
ruptures which may be associated to neotectonics, 
types of bedrock basement and quantity of rainfall 
(Ritter et al., 1995). Low DD is between 0-0.6; av-
erage DD falls between 0.61.-0.9 and higher if it is 
> 0.9 (Hironi, 1991). The mechanisms for computing 
the TSR and DD are shown below in the flow chart 
in (Figure 7).

Results and Discussion

In neotectonic topography, drainage networks are af-
fected by the shape, type of geometrical forms and 
nature of recent neotectonic activity along the region-
al and localized faults. In the NPS region (Northern 
Pakistan), the bulk of drainage networks are experi-
encing the recent tectonic growth and development. 
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Figure 7: Flow charts showing various image processing steps (mod-
ified after Mahmood and Gloaguen, 2011)

The investigation of the drainage network demarcates 
zones of active deformation which is extremely signif-
icant due to preserved neotectonic signs and vulnera-
ble erosional environment. The drainage morphome-
try of the NPS region is evidently influenced by active 
tectonics (Figure 1, 2 and 3). The stream networks of 
the NPS region consist of parallel, disconnected and 
dendritic. These evolving and transformation phases 
of diverse types of stream patterns are related to spa-
tiotemporal geomorphological developments, climat-

ic variations and geotectonic processes. The uplifted 
topographic zones give rise to the parallel drainage 
type and authenticate their neotectonic control. The 
relative localized topographic uplift results in very 
steepened slopes that influence the geometry of the 
streams to become linearized, which is an indication 
of active topographic uplifts. The disconnected and 
rugged drainage geometry corresponds to a compos-
ite topography with neotectonic settings. 

Drainage Density (DD)
Strahler (1956) stated that DD changes in inverse 
proportion to localized relative topographic relief 
for the first Strahler order sub-watershed and de-
pends on the Froude, Reynolds and Horton numbers. 
Strahler introduced the mechanism that DD values 
are associated with increased erosion, exhibiting that 
the shape of drainage constantly adjusts to attain a 
dynamic equilibrium between climate change erosion 
and tectonics. DD is also dependent on the hydrolog-
ic characteristics of the topography, climatic environ-
ment and morphometric factors. Not a solitary model 
has so far been perfect that can incorporate all the 
factors at one platform.

DD show higher values in those areas where channels 
are very much loaded with fluvial and alluvial sedi-
ments. This shows that DD contains the amount of 
suspended sediments load, which is the consequence 
of the similar parameters referred above. High DD 
values are found in NE, SW and central parts and 
particularly in the NPS region, Sassi, Raikot, Ja-
glot, Bunji and Nanga Parbat along and parallel to 
the north-eastern peripheries of MMT (Figure 8). 
Higher DD values mean a “younger terrain”, exist-
ence of a matured drainage, flash run-off from steep 
hillslopes to local streams, less vegetation coverage, 
rocks, watershed soils, and topography have generally 
low permeability. Lower DD values are observed on 
NW perimeter of MMT, west of Sassi and Jaglot, SE 
regions of the research site near Deosai Plateau. The 
DD values were determined for moving windows of 
various dimensions of 6, 5, 4, 3, 2 and 1 km (Figure 
8). Low DD values may correspond to the subsistence 
of karst type topography, highly porous, permeable al-
luvial and fluvial deposits in the watershed floors and 
extremely rugged bedrock channels that can lead to 
huge drainage volumes storage and small episodes of 
peak floods, for example, Deosai Plateau in the re-
search site. With the increase of window size, DD in-
creases as the number of channels within the unit area 
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Figure 8: The drainage density maps generated with different moving window sizes of 1, 2, 3, 4, 5 and 6 km.
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are increased and due to this splash run-off develops 
and causes small episodic flood peaks. 

Topographic Surface Roughness (TSR)
The results from TSR demonstrate a powerful rela-
tionship between NPS evolution and neotectonics. 
Therefore, the current NPS terrain can be portrayed as 
a neotectonically influenced regime. DEM generated 
TSR investigation shows that higher values of TSR 
are found in the NE periphery of MMT, Sassi-Ja-
glot-Bunji-Raikot-Nanga Parbat segment known as 
SRFZ (from 1.1-1.62) in the research region except 
for the Kachura, Skardu, Deosai Plateau and NW 
of Jaglot where it is relatively less as 1.0 (Figure 10). 
These lower, medium and higher TSR values give de-
tails about the higher fluvial relative relief in the re-
search site, which completely agrees with the medium 
to higher values of TSR. Because of higher slopes, the 
hill-slopes become unstable, and the related processes 
(land-slides and Rock-slides etc.) become active and 
are consequently modified swiftly and simply by mass 
movements. 

An investigation based on SRTM DEM and result-
ing TSR thematic maps with variable roving sizes of 
windows mainly (6, 5, 4, 3, 2 and 1 Km) (Figure 9) 
indicate higher TSR values (stronger chanel incision) 
along the -Jaglot-Bunji-Raikot-Nanga Parbat seg-
ment know as SRFZ Deosai Plateau, upper Skardu 
and NE fringe of MMT (Figure 9) revealing neo-
tectonic deformation and existing relative episodes of 
topographic uplift. The increased TSR or river rela-
tive relief can also be a result of partly strained by 
isostatic recoil due to orogenic meeting developments 
(junction region of three majestic mountain ranges, 
i.e., Hindukush- Karakorum-Himalyas (HKH) re-
gion), mostly permitting this orogenic chain growth. 
This orogenic HKH chain emerged as a consequence 
of crustal thickening in IndoPak-Eurasian head-on 
collision. Consequently, higher uneven fluvial relative 
relief principally generated the relative and unique 
differential uplifted topography with the exemption 
of flood plains and second World’s highest Deosai 
Plateau, resulting from ongoing neotectonic activity. 
It seems rational to recommend that the rapid and 
unique relative relief in the majority of the NPS region 
disclose a combination of extreme and world highest 
relative relief of roughly 22,500 feet within a little ex-
panse of 25-27 km from Raikot bridge to Nanga Par-
bat peak with Indus river as local base level (Figure 10) 
and this may be due to significant neotectonic surge. 

Conclusions and Recommendations

The investigation of geomorphic indices (DD and 
TSR) is important for the quantitative manifestations 
of a drainage system and spatiotemporal topographic 
evolution and development. It has been observed that 
along SRFZ reverse faults and MMT, an increase in 
magnitudes of the earthquakes is compliant to higher 
TSR and DD values. Reverse fault topography gen-
erally holds extensive and complex geological active 
structures, while sinistral or dextral faults are usually 
responsible for making the drainage system become 
linearized and tectonically or geologically oriented. 
DD and TSR analysis can be useful to conclude the 
possible nature of faulting in neotectonic zones. DD 
and TSR can distinguish the comparatively uplifting 
topographic segments with conflicting homogeneity 
and orientation. NPS region is an extremely and rap-
idly uplifting zone and is extraordinarily deformed 
topography because of recent recurrent damaging 
and deadly earthquakes due to ongoing neotectonic 
activity. This evaluation provides a proposal to Paki-
stan state administration in the context of future in-
frastructure development carefully, to take practical 
measures to guarantee the security of lifelines (hos-
pitals, roads, internet highway, future railways, mobile 
networks etc.), in view of significant China Pakistan 
Economic Corridor (CPEC), a socio-economic up-
lift project for Pakistan, China and the region of One 
Belt One Road (OBOR) project.
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Figure 9: The TSR maps with different moving window sizes of 1, 2, 3. 4, 5 and 6 km.
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Figure 10: The google pro screenshot illustrating the elevation profile from Nanga Parbat top to Raikot bridge showing the highest unique 
relative relief in the world (22,000 feet within short expanse of 28 km).
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