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Current study was designed for the development of an economic and environment friendly mechanism 
for the production of thermostable cellulase. Production of cellulase was focused due to its diverse range 
of application in industry. In the present study, conditions were optimized for the maximal production 
of recombinant thermostable cellulase from Thermotoga naphthophila using BL21-CodonPlus (DE3) 
cells as expression host and pET28a as expression vector. Effect of various concentration of Isopropyl 
β-D-1-thiogalactopyranoside (IPTG), post induction time, effect of temperature and pH were examined 
for the maximal production of recombinant cellulase. The effect of supplementation of LB medium with 
additional carbon and nitrogen sources was also analyzed for maximal production of recombinant protein. 
Higher level enzyme activity was recorded at 25°C, pH 7.0 when the cells were induced with 0.5 mM 
IPTG with 22h post induction incubation. Supplementation of LB medium with 1% glucose and yeast 
extract enhanced the production of recombinant thermostable cellulase. Enzyme showed strong potential 
for its use in paper and poultry feed industry. Under the optimal conditions we could able to produce 48 
U/mL of recombinant cellulase.

INTRODUCTION

Cellulose is the most abundant organic compound 
on earth and is the principal component of plant 

cell wall (Wang et al., 2015). It is a homo-polymer of 
glucose where monomers are linked each other through 
β-1,4 glycosidic linkage (Kang et al., 2011). A variety of 
industrial and agricultural wastes have cellulose as a major 
component which can be transformed into simple sugar 
via the hydrolysis process. Two methods are available for 
hydrolysis of cellulose to its monomeric units. The chemical 
hydrolysis method requires the treatment of cellulose with 
strong acid under high temperature >300°C at 25 MPa 
which make this method as cost efficient with poor quality 
and low yield of final product (Deguchi et al., 2006). 
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Enzymatic hydrolysis method is preferred over chemical 
hydrolysis due to its environment friendly nature. 
Cellulases are biocatalyst required for digestion of 
cellulose under ordinary temperature and pH conditions 
which is not hazardous to environment (Koomnok, 2005).

On the basis of catalytic action, the cellulases have 
been divided into the three major classes including 
endoglucanases (EC 3.2.1.4), β-glucosidase (EC 3.2.1.21) 
and exoglucanase (EC 3.2.1.91) which are responsible 
for the de-polymerization of complex cellulose to simple 
glucose units (Karmakar and Ray, 2011). Cellulases have 
been immensely used in various industries including 
textile industry for improvement of fiber softness (Galante 
et al., 1998; Sreenath et al., 1996), in paper and pulp 
industry for refinement and strengthing of paper (Singh 
et al., 2007; Akhtar, 1994; Bhat, 2000), in bioethanol 
production for saccharification of lignocellulosic materials 
(Sukumaran et al., 2005; Kuhad et al., 2010; Gupta et 
al., 2011), in wine and brewery industry for improving 
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the quality and yield of the fermented product (Singh et 
al., 2007; Galante et al., 1998; Bamforth, 2009), in food 
processing industry for the improvement of extraction 
procedure, cloud stability, texture and clarification of fruit 
and vegetable juices (Minussi et al., 2002; Carvalho et 
al., 2008), in animal feed industry for the improvement of 
nutritional value of feed by adding the digestion process 
and ultimately the performance of animals (Dhiman et al., 
2002), in agriculture for enhancement of crop growth by 
controlling plant diseases (Chet et al., 1998; Harman and 
Kubicek, 1998) and in detergent industry for improving 
colour brightness, feel and dirt removal from garments 
(Sukumaran et al., 2005; Singh et al., 2007; Sharyo et al., 
1978).

Recombinant DNA technology played significant 
role for the fulfilment of industrial requirement of 
enzymes. Selection of appropriate expression vector and 
its compatibility with expression system is very important 
for the successful production of recombinant protein. An 
efficient expression system which can fulfil the industrial 
demand of enzyme in a limited time with low cost is 
required in order to meet the industrial demand (Porro et 
al., 2005). Optimization of conditions is another strategy 
being followed by scientists for the higher level production 
of recombinant proteins (Larentis et al., 2011; Couto et 
al., 2017; Mohajeri et al., 2016; Morowvat et al., 2015; 
Muntari et al., 2012).

Present study deals with the utilization of BL21-
CodonPlus (DE3) a prokaryotic expression system as 
expression host and pET28a having cellulase gene from 
T. naphthophila as expression vector for the production of 
recombinant cellulase. The conditions including inducer 
concentration, post induction time, medium composition, 
temperature and pH were analyzed for the enhanced 
production of recombinant cellulase.

MATERIALS AND METHODS

Chemicals
All the chemicals utilized in this study were of 

analytical grade and were purchased from Merck, Life 
Sciences, Darmstadt, Germany.

Expression machinery
Recently, we have characterized a recombinant 

thermostable cellulase from T. naphthophila (Khalid et al., 
2019). Cellulase gene from T. naphthophila was cloned 
in pET28a and was expressed in BL21-CodonPlus (DE3) 
cells. The recombinant cells harboring the pET28a with 
cellulase gene from T. naphthophila were utilized for the 
optimizing of conditions for the maximal production of 
recombinant thermostable cellulase.

Production of recombinant cellulase
Regarding the production of recombinant cellulase, 

the overnight grown recombinant BL21-CodonPlus (DE3) 
cells were diluted to 1% with fresh LB medium and was 
incubated at 37°C under shaking conditions (I3000, Lab 
Tech, Korea) till the OD660 reached to 0.4. The cells were 
induced with 1 mM IPTG followed by further incubation 
at 37°C. The production of recombinant protein was 
analyzed after lyzing the cells by sonication (Sonics, 
Newtorn, USA) (Mansoor et al., 2018).

Activity assay
Cellulase activity was determined in 50 mM sodium 

acetate buffer (pH 4.8) using carboxymethyl cellulose as 
substrate. The reaction mixture was incubated in water 
bath at 90°C for 30 min. The production of monomeric 
sugars was estimated by DNS method. One unit of enzyme 
was the amount of enzyme required to liberate 1 µmol of 
reducing sugars under the assay conditions (Miller, 1959).

Optimization of conditions for the maximal cellulase 
production

Effect of IPTG concentration
In order to explore the effect of inducer on the 

production of recombinant protein, the BL21-CodonPlus 
(DE3) cells were induced by varying the IPTG 
concentration from 0.1 to 1 mM and cellulase production 
was recorded at each IPTG concentration (Pereira et al., 
2010).

Effect of post-induction temperature and incubation 
time
The production of recombinant cellulase was 

analyzed at 20, 25 and 37°C. For this purpose, the cells 
were shifted to respective temperature before induction 
after attaining the OD660 to 0.4 and were induced with 0.5 
mM IPTG. The cellulase production was recorded at 20, 25 
and 37°C. Regarding the optimization of incubation time, 
the sample after induction was withdrawn after every hour 
and was utilized for the determination of enzyme activity 
(Oelschlagel et al., 2015).

Effect of pH
The overnight grown recombinant BL21-CodonPlus 

(DE3) cells were diluted to 1% with fresh LB broth 
prepared in 50 mM of each of sodium acetate buffer (3-
5), Sodium phosphate buffer (5-7) and Tris HCl buffer 
(7-9). The cells were incubated again at 37°C till the 
achievement of OD660 to 0.4 and were induced with 0.5 
mM IPTG followed by further incubation at 25°C for 22 h. 
The enzyme activity was recorded at each pH after losing 
the cells (Oelschlagel et al., 2015).
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Effect of supplementation of medium
Various carbon sources including glucose, sucrose, 

lactose, starch, fructose & maltose and nitrogen sources 
including yeast extract, tryptone, peptone, urea, glycine 
and inorganic nitrogen sources including ammonium 
chloride and ammonium sulphate were utilized for the 
supplementation of LB medium at a final concentration of 
1%. The overnight grown recombinant BL21-CodonPlus 
(DE3) cells having recombinant pET28a were diluted to 
1% with the LB medium supplemented with additional 
carbon and nitrogen sources separately. The cells were 
induced with 0.5 mM IPTG and the expression of 
recombinant protein was analyzed at 25°C after 22 h of 
incubation (Zhang et al., 2009).

Fig. 1. Optimization of IPTG concentration for the 
maximal production of recombinant cellulase. The data on 
X-axis shows the IPTG concentration (mM) whereas on 
Y-axis shows the relative activity (%).

RESULTS AND DISCUSSIONS

Prokaryotic expression system is being preferred 
over eukaryotic expression system due to its low cost, 
rapid growth rate, flexibility and ease to scale up for 
higher level production of proteins which don’t require 
post translational modifications (Porowinska et al., 2013). 
More over optimization of conditions is another strategy 
along with the suitable expression system for eminent 
production of recombinant proteins. IPTG is an inducer 
molecule, commonly utilize for production of recombinant 

protein being produced under the lac operon. Current study 
demonstrated the enhanced production of recombinant 
protein with the increase in IPTG concentration. 
Maximal cellulase production was achieved at 0.5 mM 
IPTG while further increase in IPTG resulted in reduced 
enzyme production (Fig.  1). The reduced production of 
recombinant cellulase at higher concentration of IPTG is 
due to its toxicity to cell and its ability to diminish the 
rate of synthesis of ribosomal RNA (Rizkia et al., 2015). 
These results are in agreement with the previous report for 
the production of cellulases from E. cellulosolvens (Yoda 
et al., 2005), C. saccharolyticus (Park et al., 2011) and T. 
maritima (Pereira et al., 2010) whereas in contrast to this, 
maximal cellulase production from P. furiosus (Kataoka 
and Ishikawa, 2014) was recorded at 0.1 mM IPTG.

Fig. 2. Coomassie Brilliant Blue R-250 Stained SDS-
PAGE Gel Showing effect of incubation temperature on 
the production of recombinant cellulase (39 kDa): Lane 
L, protein ladder (Precision Plus Protein Ladder, Bio 
RAD, USA); Lane 1, soluble fraction after lysis of cells 
having pET28a without insert as negative control; Lane 
2-6, Soluble part after lysis of cells having pET28a with 
cellulase gene with post induction period of 1–5 h at 37°C; 
Lane 7, soluble part after lysis of cells having pET28a with 
cellulase gene with post induction period of 22 h at 20°C; 
Lane 8, soluble part after lysis of cells having pET28a with 
cellulase gene with post induction period of 22 h at 25°C.

Optimization of post induction incubation 
temperature is important for the higher level production 
of recombinant protein in soluble form. The recombinant 
protein was produced mainly as insoluble inclusion bodies 
at 37°C and the expression of recombinant cellulase was 
quite low at 20°C whereas the maximal soluble production 
of recombinant protein was achieved at 25°C (Fig. 2) after 
22 h of incubation (Fig. 3). We could produce maximum 
of 18, 28 and 08 U/mL of recombinant cellulase at 20, 25, 
37°C, respectively. This strategy of expressing protein 
at low temperature with extended incubation time was 
previously reported by Rincon et al. (2017), Tayyab et al. 
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(2011) and Zhang et al. (2009). Cellulases from T. maritima 
(Pereira et al., 2010), Acidothermus cellulolyticus (Wang et 
al., 2015), Eubacterium cellulosolvens (Yoda et al., 2005) 
and Fervibacterium nodosum (Wang et al., 2010) showed 
their optimal production under low temperature between 
16 to 28°C whereas cellulase from Caldicellulosiruptor 
saccharolyticus (Park et al., 2011) showed its high level 
production at 30°C with overnight incubation.

Fig. 3. Effect of post induction incubation time on 
recombinant cellulase production. Experiment was 
conducted at 25°C. The data on X-axis shows the post 
induction incubation time (h) and Y-axis shows the relative 
activity (%).

Table I.- Effect of various carbon and nitrogen sources 
on the production of recombinant cellulase.

Sources Relative activity (%)
Carbon 
sources

Control 100
Glucose 163
Maltose 161
Lactose 153
Sucrose 127
Fructose 109
Starch 105

Nitrogen 
sources

Control 100
Yeast extract 197
Tryptone 171
Peptone 120
Ammonium sulphate 40
Ammonium chloride 38
Urea 34
Glycine 23

Change in pH always shows significant influence on 
the growth of bacteria. No significant bacterial growth or 
cellulase production was recorded at pH 3 or 4. However 

the cellulase production was increased with the increase 
in pH beyond 5 and maximal cellulase production was 
recorded at pH 7 while further increase in pH resulted in 
reduced enzyme production (Fig. 4). These findings are in 
agreement with the findings of Oelschlagel et al. (2015) 
while according to other reports optimal production of 
recombinant proteins was recorded at pH 7.5 (Wang et al., 
2014; Zhang et al., 2009; Mendoza et al., 2014).

Fig. 4. Optimization of pH for the maximal production 
of recombinant cellulase. The cellulase production was 
analyzed in 50 mM of each of sodium acetate buffer (3-5), 
sodium phosphate buffer (5-7) and Tris HCl buffer (7-9). 
The data on X-axis indicates the buffer pH values while on 
Y-axis show relative activity (%).

Medium supplementation with various carbon 
and nitrogen sources showed the enhanced production 
of recombinant cellulase. The high level production of 
recombinant protein was achieved when the medium 
was supplemented with glucose or maltose at a final con 
centration of 1%. The results depicted that glucose or 
maltose are carbon sources being preferred by BL21-
CodonPlus (DE3) cells for their growth and for the 
production of recombinant protein (Table I). This is might 
be due to their monomeric nature and ease in absorption as 
compared to lactose or sucrose (disaccharides) and starch 
(polysaccharide). Similarly, aldo-sugars are being preferred 
over keto-sugars by BL21-CodonPlus (DE3) cells for their 
growth. These results are in agreement with previous 
reports by Nur et al. (2016), Bren et al. (2016), Wang et 
al. (2015) and Bettenbrock et al. (2007). Production of 
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recombinant cellulase was also enhanced when the LB 
medium was supplemented with yeast extract or tryptone 
as additional nitrogen sources whereas the rest of selected 
nitrogen sources could not contribute significantly in the 
production of recombinant protein (Table  I). The results 
demonstrated that BL21-CodonPlus (DE3) cells preferred 
organic nitrogen sources over inorganic nitrogen sources 
for the growth (Table  I). These results are in agreement 
with previous reports by Fu et al. (2006), Zhang et al. 
(2009), Mahmoudi et al. (2012) and Lee and Chang 
(1994), who observed the higher level cellular growth and 
the enhanced production of recombinant protein when 
the medium was supplemented with yeast extract and 
tryptone, respectively.

CONCLUSION

This study demonstrated the optimization of 
conditions for the enhanced production of recombinant 
thermostable cellulase using a prokaryotic expression 
system. Optimization studies revealed the highest cellulase 
activity when recombinant cells were induced with 0.5 
mM IPTG with post induction incubation of 22h at 25°C 
(28 U/mL) in the presence of 50 mM sodium phosphate 
buffer pH  7 (37  U/mL) and when the LB medium was 
supplemented with glucose and yeast extract as carbon 
and nitrogen sources (48  U/mL). Current work was a 
foundation study that will act as milestone for the industrial 
scale production of recombinant cellulase at domestic 
level and for the fulfilment of local industrial requirement 
of the enzyme in Pakistan.
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