Supplementary Material

Identification of Differentially Expressed Long Noncoding RNAs and mRNAs Involved with Dominant Follicle Selection in Goats using RNA-seq

Guang-Xin E, Yong-Ju Zhao, Yue-Hui Ma, Ming-Xing Chu, Jia-Hua Zhang, Zhong-Quan Zhao, Hui-Jiang Gao, Rui-Jian Ma, Li-Ming Li, Yan-Bin Zhu, Wang-Dui Basang, Luo-Bu Danjiu, Jia-Hua Zhang, Shi-Cheng He, and Yong-Fu Huang

1Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
2Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
3College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
4Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
5College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
6Tibet Academy of Agriculture and Animal Husbandry Science, Lasa 850001, China
7Nagqu grassland station, Naqu 852000, China
8Sichuan Academy of Grassland Sciences, Chengdu, Sichuan 611731, China

Guang-Xin E and Yong-Ju Zhao contributed equally in this article.

* Corresponding author: H67738337@swu.edu.cn
0030-9923/2018/0001-0047 $ 9.00/0
Copyright 2018 Zoological Society of Pakistan

DESCRIPTION OF ANIMAL AND SAMPLING

The experimental conditions of this study were approved by the Committee on the Ethics of Animal Experiments of the Southwest University (No. [2007] 3) and the Animal Protection Law of China.

Ovaries of three samples of Dazu black goats 1.1-1.2 years old were collected on October 12, 2015 at the domestic animal conservation field of the Southwest University (Chongqing, China; E106°25’29.19”, N29°49’36.72”, 763 m), and detail information about individuals in this study as Supplementary Table I.

The collected tissue was stored, and the follicles were stripped in 37°C saline immediately after removal. The follicles of 3 female individuals were separated into dominant (diameter > 5 mm) and nondominant follicles (3mm < diameter < 5mm) using the standard protocol (Medan et al., 2005; Supplementary Fig. S1).

Supplementary Table I.- Information of experimental animal in this study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Breed</th>
<th>Sex</th>
<th>Coat Color</th>
<th>Body Weight (Kg)</th>
<th>Age (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dazu black goat</td>
<td>Female</td>
<td>Black</td>
<td>43.5</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Dazu black goat</td>
<td>Female</td>
<td>Black</td>
<td>42.6</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>Dazu black goat</td>
<td>Female</td>
<td>Black</td>
<td>40.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
DETAIL INFORMATION OF OPERATION

RNA extraction

For the lncRNA and mRNA gene pools, total RNA was extracted from the follicle pools using TRIzol® Reagent according to the manufacturer’s protocol (Invitrogen, USA), and genomic DNA was removed using DNase I (TaKara, Japan).

RNA quality was determined using a 2100 Bioanalyzer (Agilent), and RNA was quantified using the ND-2000 (NanoDrop Technologies).

Equal amounts of RNA from three different goats and the same follicle developmental phases (dominant and nondominant) were pooled.

Library preparation, genome-wide resequencing and analysis

The ribosomal RNA was removed by Epicentre Ribozero rRNA Removal Kits (Epicentre, Madison, WI, USA), and the rRNA-free residue was precipitated with ethanol.

In addition, high strand-specificity libraries were generated using the rRNA-depleted RNA of the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). Briefly, the libraries were prepared as described by Ren et al. (2016).

After quantification by the Agilent Bioanalyzer 2100 system, paired-end libraries were sequenced on the Illumina HiSeq 2500 platform (2 × 125 bp read length) by Gene Denovo Technologies (Guangzhou, China).

The raw, paired-end reads were trimmed and quality controlled using SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle) with the default parameters.

The clean reads of each pool were separately aligned to the C. hircus reference genome (CHIR_1.0) (Dong et al., 2012) in orientation mode using Bowtie v2.0.6 (Langmead et al., 2013) and TopHat v2.0.9 (Kim et al., 2013) software.

The coding potential and conservation of the lncRNAs were analyzed using CNCI v2 (Sun et al., 2013), iPfam (Finn et al., 2014), and PhyloCSF (Lin et al., 2011) to identify the final candidate lncRNAs for the next step in the analysis.
To identify the DEGs (differentially expressed genes) in the two different pools, the expression level for each transcript was calculated using the fragments per kilobase of exon per million mapped reads (FRKM) method. Cuffdiff (http://cufflinks.cbcb.umd.edu/) (Trapnell et al., 2012) was used for the differential expression analysis.

The DEGs of the two pools were selected using the following criteria: 1) a fold change greater than 2, and 2) a P-value FDR (false discovery rate) of less than 0.05.

To understand the functions of the differentially expressed genes, GO functional enrichment and KEGG pathway analysis were carried out using Goatools (https://github.com/tanghaibao/Goatools), KOBAS (http://kobas.cbi.pku.edu.cn/home.do) (Xie et al., 2011) and R package (clusterProfiler).

REFERENCES

