Submit or Track your Manuscript LOG-IN

Molecular Identification, Tissue Distribution, and Effects of Fasting and Refeeding on the Transcription of Uncoupling Protein 2 in Yellow Catfish, Pelteobagrus vachelli

Molecular Identification, Tissue Distribution, and Effects of Fasting and Refeeding on the Transcription of Uncoupling Protein 2 in Yellow Catfish, Pelteobagrus vachelli

Fan Da1,3, Zheng-Yong Wen1,2*, Xiao-Dong Wang4 and Yu Luo5

1College of Life Sciences, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
2BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
3School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
4Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
5Institute of Aquaculture, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan 641000, China.
 
* Corresponding author: zhengyong_wen@126.com

ABSTRACT

Uncoupling protein-2 (UCP2), an important member of the inner mitochondrial membrane protein families, plays pivotal roles in energy expenditure, fatty acid metabolism and ROS emission in mammals. In contrast to mammals, the roles of this protein are still rarely known in fish. Here, we first identified the ucp2 gene in yellow catfish (Pelteobagrus vachelli) and investigated its transcriptional changes in response to fasting and refeeding. The cDNA of pvucp2 was 1,193 bp long and possessed a 939 bp open reading frame (ORF) encoding 312 amino acids. Multiple protein sequences alignment revealed that UCP2 protein sequences were highly conserved among vertebrates. Phylogenetic analysis suggested the evolutionary process of fish ucp2 was consistent with species evolution, and the pvucp2 shared a close relationship with electric eel ucp2. Quantitative PCRs showed that pvucp2 was extensively expressed in all detected tissues, with the highest expression in liver. Two-week fasting significantly decreased while refeeding dramatically increased the hepatic pvucp2 transcriptions. These findings suggested that fish UCP2 proteins are highly conserved and they might play important roles in maintaining energy homeostasis and reducing reactive oxygen species.

 

To share on other social networks, click on any share button. What are these?

Pakistan Journal of Zoology

August

Vol. 54, Iss. 4, Pages 1501-2001

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe