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Hosts and Viruses

Abstract | Capripoxvirus (CaPV) infections are highly contagious and OIE notifiable viral diseases of sheep, 
goats and cattle. They are endemic in most parts of the globe associated with significant production losses 
due to high morbidity, high mortality rate and animal trade restrictions. Though several diagnostics including 
molecular tools are available, recombinant protein based diagnostic assays namely ELISA is safer and robust 
to handle large sample size and also to minimize labor/time. However, the genus Capripoxvirus encodes 
putative 147 proteins in their genome, among which some of them are reported as potential immunogenic 
candidate genes. Selection and use of such candidate immunogenic proteins from an array of genes located 
at different structures of a mature virion are the real challenge and time consuming task for researchers. 
Nevertheless, identification of candidate gene(s) using advanced bioinformatic tools will ease the process and 
can select the suitable protein(s) to use in the development of specific and sensitive diagnostic assays and also 
effective vaccine candidates which are vital elements in control and eradication of any infectious disease from 
an endemic country. In this review, we describe different structures of mature pox virion with reference to 
vaccinia virus (VACV), list of immunogenic candidate genes presents in CaPV genome and their potential 
use in diagnostic/vaccine developments.
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Introduction

Sheeppox (SP) and goatpox (GP) are highly 
contagious and devastating viral systemic disease 

of sheep and goats whereas Lumpy skin disease 
(LSD) is disease of cattle. All three diseases are 
classified by the OIE as a notifiable disease (OIE, 
2016) based on the risk it poses to animal health 
and the agricultural economy. They are considered 
economically important transboundary diseases of 
livestock. The causative agents of SP and GP are 
sheeppox virus (SPPV) and goatpox virus (GTPV) 

that belong to the Capripoxvirus genus within the 
subfamily Chordopoxvirinae of the family Poxviridae 
(Madhavan et al., 2016). The other member of this 
genus is lumpy skin disease virus (LSDV). Both SP 
and GP are endemic mainly in central and northern 
Africa, central Asia and parts of China (Bowie et 
al., 2000; Babiuk et al., 2008; Bowden et al., 2009; 
Kitching and Carn, 2008). The disease is associated 
with high morbidity (70–90%) and mortality up to 
49.5% (Garner et al., 2000). Young animals show more 
severe disease, and mortality in kids may be as high as 
100% (Rao and Bandyopadhyay, 2000). The disease is 
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characterized by high fever, generalized pox lesions on 
the skin and mucous membranes and enlargement of 
all the superficial lymph nodes. Goatpox is considered 
as the important constraint in the international trade 
of animals and their products (Babiuk et al., 2008; 
Madhavan et al., 2016). 

The viral particle with a complex symmetry 
contains linear double-stranded DNA, ~150 Kbp 
size. The virion is enveloped and brick shaped with 
300×270×200 nm in size (King et al., 2011). These 
three viruses show 96-97% similarity in nucleotide 
and amino acid sequence over their entire length 
(Black et al., 1986; Tulman et al., 2002; Zeng et al., 
2014). They cannot be differentiated by serological 
methods. Diagnosis of capripoxvirus  infection is based 
on detecting the viral antigen or antibody including 
virus isolation; counter immunoelectrophoresis 
(CIE), serum neutralization test (SNT) and nucleic 
acid detection methods including visual detection 
LAMP assay (Bhanuprakash et al., 2011; Madhavan 
et al., 2016). The impeccable advancements in gene 
expression technology have made easier the process 
of diagnostic/prophylactic antigen production and 
purification in an efficient manner.

In the past, researchers made attempts to express 
and purify various CaPV proteins using bacterial, 
mammalian and yeast cells and assess the potential 
utility of these expressed antigens in various 
diagnostic assays including ELISA. However, several 
problems associated with the right identification 
and selection of a single immunogenic gene or its 
combination impedes the process of recombinant 
ELISA development and its utility. In general, 
poxviruses typically produce two infectious forms, 
namely extracellular enveloped virions (EEV) and 
intracellular mature virions (IMV) each with specific 
protein composition (Chung et al., 2006). It could be 
a significant achievement if the immunodominant 
CaPV proteins were identified from the IMV/EEV/
core part of the virus and developed into an ELISA 
format having comparable diagnostic efficacy to SNT/
VNT. Development of such a robust assay is need of 
the hour for high throughput screening of infected 
and vaccinated serum samples from target hosts 
namely sheep, goats and cattle particularly during 
control and eradication programs. In this mini-review, 
we discuss the different virion structures associated 
with encoded immunogenic proteins, varying degrees 
of host interaction and their potential implications in 

diagnostic/prophylactic measures.

Immunogenic proteins of vaccinia virus
Among poxviruses, Vaccinia virus (VACV) has been 
studied in depth at both genomic and proteomic levels. 
VACV encodes about 200 proteins, but only few IMV 
proteins (A27L, L1R, D8L, H3L and A17L), EEV 
proteins (B5R, A33R, A34R, A36R and A56R), and 
core proteins (A4L and A10L) have been shown to be 
immunogenic (Ramirez et al., 2002). The schematic 
of putative immunogenic proteins and its location in 
different infectious structures of the mature virion 
is shown as Figure 1. Of the two infectious forms, 
the most potent neutralizing antibodies were found 
against the IMV form (Ichihashi and Oie, 1996). 
Experimental evidence shows that at least five of these 
proteins (H3L, A27L, B5R, D8L and L1R) elicit 
protective neutralizing antibodies in mice (Rodriguez 
et al., 1987; Wolffe et al., 1995; Galmiche et al., 
1999; Hsiao et al., 1999) and one protein (A33R) 
induces a protective, but non-neutralizing antibody 
response (Galmiche et al., 1999). As there is a 
significant evolutionary distance between CaPVs and 
orthopoxviruses (OPVs), it is not possible to directly 
predict whether the CaPV orthologs will also elicit 
neutralizing antibodies. Therefore, it is necessary to 
study in detail about an array of VV orthologs present 
in CaPV for secondary structural characteristics 
including antigenicity and hydrophilicity by using 
bioinformatic tools and selection of candidate gene(s) 
to express and evaluate in immunological assays like 
ELISA.

Figure 1: Schematic representation of membrane structures and 
associated putative immunogenic proteins in a mature poxvirus 
(Panel A: Core; Panel B: Intracellular mature virion; Panel C: 
Extracellular enveloped virion).

VACV homologs in SPPV and GTPV
CaPV members including GTPV possess ~150 kb 
dsDNA genome coding for ~147 putative proteins 
that are likely to be involved in replication, structure, 
assembly, virulence and host range (Moss, 2001; Zeng 
et al., 2014). During replication process in hosts, 
CaPV produces 147 putative proteins of varying size 
ranges from 53-2027 amino acids in length. Some 
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of them are immunogenic to produce neutralizing 
antibodies after infection while some proteins elicit 
non-neutralizing antibodies though immunogenic 
in nature. The presence of a large number of proteins 
in virions presents challenges to the identification of 
immunomodulatory proteins of CaPV. Targeting of 
immunogenic proteins is helpful in the development 
of specific and sensitive diagnostic assays and 
effective vaccine candidate that helps in control 
and eradication of the disease from any country 
(Tuppurainen et al., 2017; Bhanuprakash et al., 2011). 
During pox virus infection, intracellular mature virion 
(IMV) and extracellular enveloped virion (EEV) are 
produced, which are the two major infectious forms 
of poxviruses. IMVs are assembled in the cytoplasm 
and are composed of a core particle containing the 
genome and numerous enveloped enzymes. At least 11 
proteins are included in the envelope of IMVs (Franke 
et al., 1990; Smith et al., 2002). IMV is the major 
form that accumulates in the cytoplasm; they may 
be released from the cell by cell lysis or alternatively 
can be wrapped in two additional trans-Golgi-
derived membranes and released from infected cells 
by budding as EEV. The outer envelope membrane of 
EEV contains several unique glycosylated and non-
glycosylated proteins involved in virus entry. Some of 
the encoded proteins are reported to be located at the 
core of the viral genome and partially exposed to host 
immunity. The outer membrane of these structures 
harbors large numbers of proteins among them few 
are immunogenic in nature (Table 1). 

Immunogenic proteins of core region
A4L: ORF 095 gene of CaPV, a vaccinia virus 
A4L homolog is reported as the highly conserved 
immunodominant acidic core protein of 39 kDa 
size synthesized at a later stage of infection. It 
was found to be highly antigenic in vaccinia virus 
as demonstrated by immunization of mice with 
recombinant A4L protein that has mounted strong 
humoral immune responses (Demkowicz et al., 1992). 
Multiple sequence alignments of CaPV ORF095 and 
its corresponding phylogeny did not reveal specific 
differences among the vaccine and virulent strains 
of GTPV and SPPV indicating that the A4L may 
not play a role in virulence or attenuation process. 
Immunogenicity and diagnostic potential of A4L 
homolog of CaPV have been evaluated in indirect 
ELISA for the detection of specific antibodies in 
infected animals (Bowden et al., 2009). It has also been 
reported that a siRNA construct targeting GTPV 

A4L has shown to inhibit the replication of GTPV 
in Vero cells (Zhao et al., 2012). A4L homologs have 
been reported in other pox viruses namely myxoma 
virus (MYXV) M093L (Van Vliet et al., 2009) and 
fowlpox virus (FWPV). FWPV A4L homolog is also 
an immunodominant protein and shows the same 
localization as VACV A4L (Boulanger et al., 1998) 
possessing highly charged domains at each end of 
the protein and multiple copies of a 12-amino-acid 
serine-rich repeat sequence in the middle of the 
protein (Boulanger et al., 1998). The predicted CaPV 
A4L protein characteristics demonstrated that this 
protein possesses a high antigenic index with good 
hydrophilicity and surface probability spanning the 
amino acid residues indicating a potential use of 
this protein as candidate diagnostic/prophylactic 
(Madhavan et al., 2016).

A12L: The core protein A12L encoded by VACV is 
~25 kDa in size and plays a major role in cleavage 
processing associated with virion morphogenesis and 
assembly (Yang and Hruby, 2007). CaPV ORF103 
encodes VACV A12L homolog has been expressed 
and evaluated in indirect ELISA along with CaPV 
A4L for the detection of Capripoxvirus specific 
antibodies in infected animals (Bowden et al., 2009). 
However, there is still a need to evaluate this core 
protein homolog for its ideal protein characteristics 
using an array of bioinformatic tools and apply for 
diagnostic/prophylactic development.

G7L: G7L (~42kDa) is reported as a major core 
protein of VACV in addition to A4L and A12L 
expressed late during viral replication and interacts 
with the A30L protein to stabilize it to play a 
role in virion morphogenesis (Szajner et al., 2003) 
similar to A12L homolog. VACV G7L is reported 
to be highly conserved among all members of the 
Chordopoxvirinae subfamily. SPPV homolog, G7L 
has been expressed in the prokaryotic system and 
the immunogenicity has been evaluated (Bowden 
et al., 2009). Detailed genetic characterization 
using different GTPV and SPPV isolates and in-
silico analysis of protein characteristics of G7L are 
necessary before its selection and application as 
candidate diagnostic/vaccine antigen.

Immunogenic proteins of IMV
L1R: L1R is (~25kDa) myristylated protein associated 
with IMV membrane and produced in late infection. 
C-terminal of L1R has a hydrophobic transmembrane 
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Table 1: List of immunogenic proteins present at different structures of mature virion and their potential utility/
applications.
Virus 
structure

Pro-
teins

Immunogenicity/diagnostic potential reported Potential utility
VV CaPV

Core G7L NA Bowden et al., 2009 Potential diagnostic antigen, Individually 
or combination with other proteins

A4L Demkowicz et al., 1992 Bowden et al., 2009; 
Chervyakova et al., 2016

Good candidate for ELISA , Individually 
or combination with other proteins

A12L NA Bowden et al., 2009 Potential diagnostic antigen, Individually 
or combination with other proteins

IMV A27L Rodriguez et al., 1987; Lai et al., 
1991; Demkowicz et al., 1992; 
Berhanu et al., 2008; Rudraraju and 
Ramsay, 2010; Ramirez et al., 2002

Chervyakova et al., 2016; 
Dasprakash et al., 2019

Potential diagnostic antigen, Individu-
ally or combination with other proteins, 
anti-A27L serum/MAb production

P32/
H3L

Lin et al., 2000; Davies et al., 2005; 
McCausland et al., 2010

Heine et al., 1999; Xiong et al., 
2008; Fang et al., 2009; Venka-
tesan et al., 2018; Chen et al., 
2008; Bhanot et al., 2009

Good candidate for ELISA 

L1R Hooper et al., 2000, 2003, 2004; 
Fogg et al., 2004; Heraud et al., 
2006

Chervyakova et al., 2016 MAb production, Potential diagnostic 
antigen, Individually or combination with 
other proteins

EEV A33R Galmiche et al., 1999; Fogg et al., 
2004; Hooper et al., 2004; Chen et 
al., 2007

Chervyakova et al., 2016 Good candidate for ELISA

B5R Galmiche et al., 1999; Berhanu 
et al., 2008; Benhnia et al., 2009; 
McCausland et al., 2010

Zheng et al., 2009 Potential diagnostic antigen, Individually 
or combination with other proteins

F13L NA Bowden et al., 2009
Kumar et al., 2019

Potential diagnostic antigen, Individually 
or combination with other proteins

Note: IMV: Intracellular mature virion; EEV: Extracellular enveloped virion; NA: Not available.

domain (Franke et al., 1990; Ravanello and Hruby, 
1994; Wolffe et al., 1995). L1R has a role in the 
formation of infectious IMV, virus entry and 
penetration (Wolffe et al., 1995; Ichihashi and 
Oie, 1996). L1R Protein is another major target 
of neutralizing antibodies (Wolffe et al., 1995; 
Ichihashi and Oie, 1996). The L1R protein contains 
six cysteine amino acid residues that have a role in 
intramolecular disulphide bond formation (Su et al., 
2005). Vaccination of mice with plasmid encoding 
L1R gene elicit neutralizing antibodies but not shown 
a protective immune response against the lethal virus. 
However, mice immunized with DNA encoding L1R 
with other immunogenic genes (A33R, B5R and 
A27L) provide sufficient protection against lethal 
vaccinia virus (Hooper et al., 2000, 2003, 2004; Fogg 
et al., 2004; Heraud et al., 2006). Sequence analysis 
of the CaPV L1R gene using different Indian GTPV 
and SPPV isolates revealed that it is highly conserved 
and showing more than 99% and >96% identity both 
at nucleotide and amino acid levels, within species 
and between species, respectively (Karki et al., 2018). 

It has been observed that SPPV L1R expressed in 
prokaryotic system has induced a potent neutralizing 
antibody response (Chervyakova et al., 2016) and 
may be a potent candidate for novel subunit vaccine 
development (Xiao et al., 2007) The conserved and 
immunogenic nature of CaPV L1R may prove to 
be a potential candidate for developing molecular 
diagnostics including recombinant protein based 
assays and prophylactics.

P32/H3L: Among IMV proteins, P32 protein is a 
homolog of VACV H3L a most immunodominant 
protein (~35kDa), present on the surface of IMV of all 
poxviruses (Lin et al., 2000). The C-terminal domain of 
H3L has a hydrophobic membrane tail that mediates 
the insertion of H3L into IMV membranes post-
translationally (da Fonseca et al., 2000; Davies et al., 
2005). In VACV, H3L has a role in virus attachment 
to cells by binding to cell surface glycosaminoglycans 
and also takes part in virion assembly (Lin et al., 
2000). It has been reported that recombinant H3L 
protein induced high titers neutralizing antibodies 



December 2019 | Volume 6 | Issue 6 | Page 134

Hosts and Viruses
in the immunized mice (Davies et al., 2005). In a 
similar line, the immunogenicity of buffalopox virus 
H3L has been evaluated and found to be protective 
in laboratory animals in passive protection studies 
(Kumar et al., 2016, 2017). MAbs against H3L 
can protect laboratory animals as passive immunity 
(McCausland et al., 2010). As a potent diagnostic 
antigen compared to VACV antigens, H3L was found 
to be a sensitive and specific candidate for diagnostic 
ELISA. In the CaPVs, ORF074 coding for P32 is 
reported as the VACV H3L homolog present in all 
the members namely SPPV, GTPV and LSDV as 
a major antigenic determinant (Chand et al., 1994; 
Tulman et al., 2002). CaPV P32 protein has been 
expressed in prokaryotic (Heine et al., 1999; Xiong 
et al., 2008; Fang et al., 2009; Venkatesan et al., 2018) 
and eukaryotic system (Chen et al., 2008; Bhanot et 
al., 2009). In the past, P32 protein has been targeted 
for detecting capripox-specific antibodies employing 
indirect ELISA (Heine et al., 1999; Venkatesan et 
al., 2018) and as capripox antigen by immunocapture 
ELISA (Carn, 1995). However, problems associated 
with the level of expression, purification and stability 
in the prokaryotic expression system urge researchers 
to use eukaryotic expression systems including insect 
cells to overcome those associated problems. 

A27L: A27L is a major envelope ~14kDa fusion 
protein located in the IMV membrane of VACV and 
present in all other pox viruses (Vazquez et al., 1998). 
This highly conserved IMV protein directly mediates 
the virus interaction with cell surface heparan sulphate 
(Hsiao et al., 1998) and also indirectly through fusion 
with A17L as a complex and thereby, it plays an 
important role in virus assembly, morphogenesis and 
release (Kumar et al., 2015). It has been reported that 
it possess coiled-coil helical region to form coiled coil 
trimers (Rodriguez et al., 1987; Sodeik et al., 1995). 
A27L is the best-characterized and most promising 
proteins to develop protective immune responses 
against vaccinia virus. A27L has a role in IMV-cell 
attachment, virus-to-cell and cell-to-cell fusion and 
microtubule transport (Chung et al., 2006; Van Vliet 
et al., 2009). Immunogenicity and protective efficacy 
of A27L have been evaluated in mice and it induces 
virus-neutralizing antibodies to protect against lethal 
VACV challenge (Demkowicz et al., 1992; Berhanu 
et al., 2008; Rudraraju and Ramsay, 2010). MAb 
against A27L protein provides passive protection 
by neutralizing the virus (Ramirez et al., 2002). 
Immunogenicity, passive protection efficacy and 

diagnostic potential of buffalopox virus A27L have 
been evaluated (Kumar et al., 2015). CaPV A27L 
has been characterized and found to be conserved in 
nature (Dasprakash et al., 2015). Antibodies against 
CaPV A27L protein possess efficient neutralizing 
activity (Chervyakova et al., 2016). An indirect ELISA 
using rA27L protein of CaPV has been optimized for 
detection of antibodies against GTPV in infected 
animals (Dasprakash et al., 2019) and may prove to 
be a sero-monitoring and sero-surveillance tool used 
during different phases of control and eradication 
programs after thorough validation. Also, A27L 
could be a suitable candidate antigen for producing 
polyclonal or monoclonal antibodies to capture test 
antigen in detection assays (Stern et al., 2016).

Immunogenic proteins of EEV 
A33R: Among EEV proteins, A33R is the outer 
envelope type II integral transmembrane glycosylated 
protein having both N and O glycosylation (~23-
28kDa) (Payne, 1992; Roper et al., 1996; Roper et 
al., 1998). A33R mainly gets localized to the golgi 
apparatus and helps in EEV formation and is present 
as a dimer unit. Also, A33R is heavily phosphorylated 
at serine residues and coordinates the incorporation 
of A36R into intracellular enveloped virion (IEV) 
membranes and, subsequently, the production of actin 
tails (Wolffe et al., 2001). It plays an essential role in 
efficient cell-to-cell spread of viral particles.  VACV 
A33R protein has been expressed in E. coli and insect 
cells (Fogg et al., 2004) and found to be immunogenic. 
Vaccination with recombinant A33R protein or DNA 
provided protection in experimental animals (Hooper 
et al., 2003; Heraud et al., 2006; Sakhatskyy et al., 
2008). Antisera against A33R are protective in vivo 
(Hooper et al., 2004; Chen et al., 2007). As there is a 
large genetic divergence between OPVs and CaPVs, 
the A33R gene of CaPV shows very less nucleotide 
identity between them. Antibodies against CaPV 
A33R protein possess efficient neutralizing activity 
(Chervyakova et al., 2016). The potential use of CaPV 
A33R as a diagnostic antigen in antibody/antigen 
detection assays is yet to be explored.

B5R: In contrast to A33R, the other significant 
EEV membrane protein B5R (~42kDa) is but type I 
membrane protein that is glycosylated at N-terminal 
and palmitylated (Isaacs et al., 1992; Payne, 1992; 
Smith et al., 2002). This glycosylated protein is 
highly conserved among many strains of VACV as 
well as other poxviruses (Engelstad et al., 1993). The 
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ectodomain of B5R presents four conserved short 
consensus repeats (SCR) that activate the complement 
system (Takahashi-Nishimaki et al., 1991; Engelstad 
et al., 1992). B5R is reported to mount the neutralizing 
antibodies (Law and Smith, 2001; Hooper et al., 
2003) and antisera against B5R possess efficient EEV 
neutralizing activity (Benhnia et al., 2009). Further, 
anti-B5R MAbs shown protective efficacy against 
VACV and other OPXVs like monkeypox and variola 
virus (Benhnia et al., 2009; McCausland et al., 2010). 
Immunogenicity of GTPV homolog, B5R has been 
evaluated in combination with other protective 
immunogens (Zheng et al., 2009). However, CaPV 
B5R homolog like A33R needs further study to 
prove its worth as a diagnostic/prophylactic agent for 
capripoxvirus infections.

F13L: Among EEV membrane proteins of VACV, 
F13L is the most abundant protein of ~37kDa size 
with a palmitoylated component (Grosenbach et al., 
1997). It is synthesized mainly at the later stage of 
virus replication and involved in viral envelopment 
and egress. F13L is reported to have phospholipase 
activity due to the presence of a conserved HKD motif 
that belongs to the members of the phospholipase D 
family. It has also been found to have lipid binding 
ability (Koonin, 1996; Sung et al., 1997). The F13L 
gene is a homolog to the Orf Virus (ORFV) B2L 
gene and the potential utility and immunogenic nature 
of rB2L of ORFV has been reported (Yogisharadhya 
et al., 2017). There are reports that ORFV B2L can 
elicit neutralizing antibodies in mice (Zhao et al., 
2011). Further, GTPV F13L has been expressed in 
prokaryotic system (Bowden et al., 2009; Kumar et 
al., 2019) and diagnostic potential of F13L homolog 
of CaPVs have been evaluated in indirect ELISA 
(Bowden et al., 2009).

Conclusions and Recommendation

CaPVs cause highly contagious infections in target 
hosts namely sheep, goats and cattle. Its endemicity 
in many countries worldwide causes a significant 
economic loss to the farmers. Recombinant protein 
based diagnostics including ELISAs are pivotal in 
control and management of CaPVs in association 
with an effective vaccine. Also it will be a handful tool 
in sero-monitoring and sero-surveillance of CaPV 
in endemic areas following vaccination. ELISA will 
be much faster, economical and easier to perform 
compared to VNT or other nucleic acid-based assays. 

Due to the complex structure of the virion and 
presence of a large number of proteins in poxviruses, 
it is difficult to identify the most suitable candidate 
protein and use in developing serological assay like 
ELISA. This selection warrants a thorough screening 
and analysis from an array of genes of the CaPV 
genome. Targeting the immunogenic proteins from 
different structures of CaPV will help in developing 
high throughput, sensitive and specific diagnostics. 
Individual or in the combination of more than one 
recombinant proteins may be imperative for the 
development of such assays or vaccine that helps in 
prevention of infectious diseases caused by members 
of CaPVs in livestock. 
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