## GENETIC VARIABILITY STUDIES IN BREAD WHEAT (TRITICUM AESTIVUM L.) ACCESSIONS

#### Said Salman\*, Shah Jehan Khan\*, Javed Khan\*\*, Rehmat Ullah Khan\*\*\* and Imran Khan\*\*\*\*

ABSTRACT:- Sixty five wheat accessions were evaluated for yield and

related traits during winter 2010-2011. Highly significant (P 0.01) differences were found for all the traits studied indicating the scope of improvement through simple selection for high mean values of these traits. Maximum genotypic differences were observed for all the studied parameters except chlorophyll concentration index and number of spikelet per spike indicating considerable amount of variation among the accessions for each trait. The genotypic and phenotypic coefficient of variation estimates were higher for all the traits except chlorophyll concentration index and days to physiological maturity. Highest heritability estimates and expected genetic advance were found for all the traits except chlorophyll concentration index, spike length and number of spikelet spike<sup>-1</sup> which exhibited moderate heritability. Based on Euclidian dissimilarity distance, 65 wheat accessions were classified in to 6 different clusters. Maximum diversity was found in cluster 1 and cluster 4. This maximum diversity explains the better parental selection for future breeding programme.

Key Words: Bread Wheat; Cluster Analysis; Diversity; Drought; Genetic Variability; Pakistan.

## INTRODUCTION

Wheat (*Triticum aestivum L.*) is the most widely consumed cereal crop worldwide. Globally, demand for wheat by 2020 is forecasted at around 950mt year<sup>-1</sup> (Kronstad, 1998). This target will be achieved only, if global wheat production is increased by 2.5% per annum. It is the staple food for a large part of the world population including Pakistan. Wheat is currently grown on 9.0mha with annual production of 23.8 mt. The present per capita consumption of wheat is  $37.5 \text{ kg annum}^{-1}$  (GoP, 2010).

Wheat production can be enhanced through the development of improved cultivars having wider genetic base capable of producing better yield under various agro-climatic conditions. Evaluation of genetic diversity levels among adapted, elite germplasm can provide predictive estimates of genetic variation among segregating progeny for pure-line cultivar development (Manjarrez-Sandoval et al., 1997). New varieties with improved agronomic traits have been the

<sup>\*</sup> Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, Pakistan.

<sup>\*\*</sup> Department of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan.

<sup>\*\*\*</sup> Extension Education and Communication, Faculty of Social Sciences, University of Agriculture, Peshawar, Pakistan. \*\*\*\* Department of Agriculture Extension, Dera Ismail Khan, Pakistan.

Corresponding author: salmanazoor@hotmail.com

SAID SALMAN ET AL.

major contributing factor to increase food production. The estimate of genetic diversity and evaluation are useful for facilitating efficient germplasm collection, management and utilization (Nisar et al., 2008). Genetic diversity is a vital source of various disease resistance and high yielding genes hence, crop improvement mainly depends on the extent of heritable diversity existing in crop species. Frequent use of few parents in breeding programme led to genetic erosion. Diverse genetic background provides desirable allelic variation among parental lines to produce new and valuable combinations (Tar'an et al., 2005). To develop high yielding and resistant varieties it is necessary to utilize the various existing genetic resources with maximum genetic diversity.

Considering the importance of genetic diversity as a basic breeding tool for improvement, the present study was conducted to evaluate the genetic variability and selection of suitable diverse parents for yield and related traits in future breeding programme.

### **MATERIALS AND METHOD**

The experiment was carried out at research area of Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University Dera Ismail Khan during winter seasons 2010-2011. Seeds of 65 bread wheat accessions differing in their genetic make-up were collected from National Agricultural Research Centre (NARC, PGRI) Islamabad and Agriculture Research Institute (ARI) Ratta Kulachi D.I. Khan (Table 1). The experiment was conducted in three replications in 5m long rows in randomized complete block design (RCBD). The plant to plant and row to row distance was kept 10 cm and 30 cm, respectively. All the recommended cultural practices were performed. At the time of maturity five plants were selected randomly from each plot to collect data on days to 50% heading, days to physiological maturity, chlorophyll concentration index, plant height (cm), number of tillers per plant, flag leaf area (cm<sup>2</sup>), spike length (cm), number of grains per spike, number of spikelet per spike, 1000-grain weight (g) and grain yield per plant (g).

The data collected was subjected to analysis of variance to test the level of significance among the genotypes for different characters according to Steel et al. (1997). Various descriptive parameters (mean, standard error of means, range and mean squares) were calculated. Genotypic and phenotypic variances, genotypic and phenotypic coefficient of variability, broad sense heritability and expected genetic advance were computed according to the method suggested by Singh and Chaudhary (1985). Using the Statistica software, cluster analysis according to Ward method was performed to separate the genotypes into distinct groups and clusters.

# **RESULTS AND DISCUSSION**

# Genetic Variability

Highly significant differences (P 0.01) were observed for all the traits studied among genotypes (Table 2). Maximum genotypic (Vg) and phenotypic variation (Vp), genotypic (GCV) and phenotypic coefficient of variability (PCV) were found for all the parameters showing a considerable range of variation among genotypes (Table 3). The PCV values in all the

| Table 1.Description and source of 65 bread wheat accessions grown in 2010-201 |           |                          |       |           |                          |  |  |
|-------------------------------------------------------------------------------|-----------|--------------------------|-------|-----------|--------------------------|--|--|
| S. No                                                                         | Accession | Source                   | S. No | Accession | Source                   |  |  |
| 1                                                                             | 010718    | S-1319                   | 34    | 010788    | SVP-37                   |  |  |
| 2                                                                             | 010724    | TANOORI                  | 35    | 010789    | SVP-40                   |  |  |
| 3                                                                             | 010726    | S-1406                   | 36    | 010790    | SVP-40                   |  |  |
| 4                                                                             | 010728    | 23584/NAI -310<br>299,61 | 37    | 010791    | SVP-39                   |  |  |
| 5                                                                             | 010730    | SOFTYXTOB'S'             | 38    | 010792    | SVP-38                   |  |  |
| 6                                                                             | 010731    | C-273                    | 39    | 010795    | SVP-44                   |  |  |
| 7                                                                             | 010736    | Moncho-S                 | 40    | 010796    | SVP-50                   |  |  |
| 8                                                                             | 010737    | V-1319                   | 41    | 010797    | SVP-50                   |  |  |
| 9                                                                             | 010738    | S.A. 75                  | 42    | 010798    | SVP-50                   |  |  |
| 10                                                                            | 010739    | C-228                    | 43    | 010799    | SVP-40                   |  |  |
| 11                                                                            | 010740    | Indus, 79                | 44    | 010800    | SVP-40                   |  |  |
| 12                                                                            | 010741    | S-347                    | 45    | 010801    | SVP-39                   |  |  |
| 13                                                                            | 010743    | Maxi-Pak                 | 46    | 010802    | SVP-38                   |  |  |
| 14                                                                            | 010744    | S-1538                   | 47    | 010803    | SVP-44                   |  |  |
| 15                                                                            | 010748    | S-57                     | 48    | 010804    | SVP-50                   |  |  |
| 16                                                                            | 010749    | S-33                     | 49    | 010805    | SVP-50                   |  |  |
| 17                                                                            | 010750    | PM.HARI'S<br>VIREOS      | 50    | 010806    | SVP-86                   |  |  |
| 18                                                                            | 010751    | DIRK                     | 51    | 010807    | SVP-67                   |  |  |
| 19                                                                            | 010752    | ZA-77                    | 52    | 010809    | SVP-74                   |  |  |
| 20                                                                            | 010753    | S-415                    | 53    | 011809    | 002463(01)               |  |  |
| 21                                                                            | 010754    | WL-711                   | 54    | 011860    | Zarghoon-79              |  |  |
| 22                                                                            | 010775    | SVP-64                   | 55    | 011861    | Pari-73                  |  |  |
| 23                                                                            | 010777    | SVP-4                    | 56    | 011862    | Punjnad-88               |  |  |
| 24                                                                            | 010778    | SVP-4                    | 57    | 011864    | Khyber-79                |  |  |
| 25                                                                            | 010779    | SVP-9                    | 58    | 011865    | Chakwal-86               |  |  |
| 26                                                                            | 010780    | SVP-22                   | 59    | 011866    | Sindh-81                 |  |  |
| 27                                                                            | 010781    | SVP-33                   | 60    | 011867    | Sutlaj-86                |  |  |
| 28                                                                            | 010782    | SVP-12                   | 61    | 011868    | 5-42                     |  |  |
| 29                                                                            | 010783    | SVP-25                   | 62    | ZAM 04    | 27th IBWSN-1994/95 E#334 |  |  |
| 30                                                                            | 010784    | SVP-26                   | 63    | GOMAL 08  | RBWYT-MR-1999/00 E#5     |  |  |
| 31                                                                            | 010785    | SVP-29                   | 64    | HASHIM 08 | BWON-SA-1997/98 E#52     |  |  |
| 32                                                                            | 010786    | SVP-24                   | 65    | DERA 98   | 5th WAWSN-1991/92 E#41   |  |  |
| 33                                                                            | 010787    | SVP-24                   | 65    | DERA 98   | 5th WAWSN-1991/92 E#41   |  |  |

GENETIC VARIABILITY STUDIES IN BREAD WHEAT ACCESSIONS

| Parameter                               | Mean   | Mean Square  | S.E. of Mean |
|-----------------------------------------|--------|--------------|--------------|
| Flag leaf area (cm <sup>2</sup> )       | 15.51  | 33.29332 **  | 0.413201     |
| Chlorophyll concentration index         | 42.73  | 10.36408 **  | 0.230541     |
| Number of fertile tiller $plant^{-1}$   | 9.22   | 3.23635 **   | 0.128828     |
| Plant height (cm)                       | 84.04  | 277.00630 ** | 1.191866     |
| Spike length (cm)                       | 11.56  | 8.73757 **   | 0.211679     |
| Days to 50% heading                     | 110.35 | 261.88410 ** | 1.158877     |
| Days to physiological maturity          | 149.07 | 317.56010 ** | 1.276132     |
| Number of spikelets spike <sup>-1</sup> | 20.33  | 17.64391 **  | 0.300802     |
| Number of grains spike <sup>-1</sup>    | 36.53  | 279.29200 ** | 1.196773     |
| 1000-grain weight (g)                   | 40.95  | 239.84930 ** | 1.109052     |
| Grain yield plant <sup>-1</sup> (g)     | 13.66  | 32.73940 **  | 0.409749     |

SAID SALMAN ET AL.

Table 2. Various descriptive statistics of important traits of bread wheat accessions

\*\* Significant at 5% level of probability.

parameters were higher than GCV values exhibiting the influence of environment over these traits. Heritability estimates of all the studied parameters were higher except chlorophyll concentration index which exhibited slightly moderate heritability. Asif et al. (2010) also recorded high heritability estimates for grain yield per plant, number of tillers per plant which supports these findings. Highest expected genetic

Table 3. Various genetic components of important traits of bread wheat accessions

| Parameter                            | Vg     | Ve=<br>Vp-Vg | Vp     | Heritability<br>% | PCV   | GCV   | Exp. GA |
|--------------------------------------|--------|--------------|--------|-------------------|-------|-------|---------|
| Flag leaf area (cm <sup>2</sup> )    | 32.27  | 3.06         | 35.33  | 91.33             | 38.32 | 36.62 | 11.18   |
| Chlorophyll conc. index              | 9.09   | 3.80         | 12.90  | 70.48             | 8.40  | 7.05  | 5.21    |
| Number of tiller plant <sup>-1</sup> | 3.14   | 0.26         | 3.41   | 92.30             | 20.02 | 19.24 | 3.51    |
| Plant height (cm)                    | 276.77 | 0.68         | 277.46 | 99.75             | 19.81 | 19.79 | 34.22   |
| Spike length (cm)                    | 8.04   | 2.09         | 10.13  | 79.36             | 27.52 | 24.52 | 5.20    |
| Days to 50% heading                  | 260.34 | 4.63         | 264.92 | 98.25             | 14.75 | 14.62 | 32.94   |
| Days to physio. maturity             | 317.03 | 1.58         | 318.61 | 99.50             | 11.97 | 11.94 | 36.58   |
| No. of spikelets spike <sup>-1</sup> | 16.58  | 3.18         | 19.76  | 83.88             | 21.86 | 20.02 | 7.68    |
| Number of grains spike <sup>-1</sup> | 277.98 | 3.92         | 281.90 | 98.60             | 45.95 | 45.63 | 34.10   |
| 1000-grain weight (g)                | 233.07 | 20.33        | 253.40 | 91.97             | 38.86 | 37.27 | 30.16   |
| Grain yield plant <sup>-1</sup> (g)  | 31.38  | 4.06         | 35.44  | 88.54             | 36.86 | 34.69 | 12.47   |
| Ve = Environmental variance          |        |              |        |                   |       |       |         |

| Table 4. Grouping based              | on different clus | ters for 65 bread | wheat accessio   | ns evaluated d   | uring winter 20  | 110-2011         |
|--------------------------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|
| Parameters                           |                   |                   | Clust            | er               |                  |                  |
|                                      | 1                 | 2                 | 3                | 4                | 5                | 9                |
| Flag leaf area (cm $^2$ )            | $15.30 \pm 1.10$  | $14.62 \pm 1.27$  | $16.15 \pm 1.2$  | $14.25 \pm 1.2$  | $16.44 \pm 0.6$  | $13.13 \pm 0.7$  |
| Chlorophyll conc. index              | 42.66 ± 0.70      | $42.18 \pm 0.60$  | $43.14 \pm 0.7$  | $43.30 \pm 0.6$  | $42.88 \pm 0.3$  | $41.59 \pm 0.9$  |
| Number of tiller plant <sup>-1</sup> | $8.46 \pm 0.58$   | $9.04 \pm 0.28$   | $9.40 \pm 0.2$   | $9.04 \pm 0.2$   | $9.42 \pm 0.2$   | $9.61 \pm 0.3$   |
| Plant height (cm)                    | 83.35 ± 3.30      | $77.25 \pm 1.91$  | 89.54 ± 4.1      | $91.06 \pm 4.1$  | $84.86 \pm 1.8$  | $79.02 \pm 2.3$  |
| Spike length (cm)                    | $10.85 \pm 0.40$  | $11.25 \pm 0.64$  | $12.81 \pm 0.6$  | $12.17 \pm 0.9$  | $11.84 \pm 0.3$  | $10.38 \pm 0.7$  |
| Days to 50% heading                  | $106.12 \pm 3.40$ | $112.50 \pm 1.62$ | $114.70 \pm 0.9$ | $111.80 \pm 3.6$ | $112.40 \pm 0.7$ | 97.71 ± 7.6      |
| Days to Physio. maturity             | $144.37 \pm 5.80$ | $147.75 \pm 4.00$ | $153.70 \pm 1.3$ | $154.00 \pm 2.4$ | $150.50 \pm 1.8$ | $137.85 \pm 2.8$ |
| No. of spikelets spike <sup>-1</sup> | $20.67 \pm 1.32$  | $20.92 \pm 0.60$  | $20.68 \pm 0.4$  | $20.76 \pm 0.4$  | $20.56 \pm 0.3$  | $17.49 \pm 1.3$  |
| Number of grains spike <sup>-1</sup> | $42.82 \pm 4.28$  | $35.60 \pm 2.26$  | $39.10 \pm 2.6$  | $31.14 \pm 2.6$  | $37.06 \pm 1.9$  | $30.41 \pm 2.6$  |
| 1000-grain weight (g)                | $41.78 \pm 2.69$  | $40.64 \pm 1.25$  | $39.51 \pm 2.4$  | $40.57 \pm 3.9$  | $42.31 \pm 2.0$  | $38.32 \pm 2.8$  |
| Grain yield plant <sup>-1</sup> (g)  | $14.48 \pm 1.06$  | $13.09 \pm 0.90$  | $14.48 \pm 1.3$  | $11.69 \pm 2.1$  | $14.60 \pm 0.9$  | $11.28 \pm 1.3$  |
|                                      |                   |                   |                  |                  |                  |                  |

GENETIC VARIABILITY STUDIES IN BREAD WHEAT ACCESSIONS

advance was found for days to heading, physiological maturity, 1000grain weight and number of grains spike<sup>-1</sup>. The remaining traits showed moderate to low expected genetic advance. Heritability and expected genetic advance is normally more helpful in predicting the gain under selection than heritability estimates alone (Johnson et al., 1955).

High heritability accompanied with high expected genetic advance for most of the traits indicates that most likely the heritability is due to additive gene effects and selection may be effective in early generations for these traits. The findings of higher heritability and expected genetic advance are in line with the findings of Munir et al. (2007), who also reported higher heritability coupled with expected genetic advance. Higher heritability with low expected genetic advance for number of tillers plant<sup>-1</sup>, spike length and number of spikelets spike<sup>-1</sup> indicates non additive gene effects and there is very limited scope for improvement in

these traits.

#### **Cluster Analysis**

It is based on Euclidean dissimilarity distance using Ward's method divided the accessions in six clusters (Table 4). Cluster 1 consists of eight accessions and 2 consists of nine accessions, cluster 3 & 6 each comprised seven accessions, cluster 4 consists of five accessions and cluster 5 consists of 29 accessions (Table 5). Cluster 1 consists of highest number of grains spike<sup>-1</sup>, 1000-grain weight and grain yield plant<sup>-1</sup> and selection for these traits can be made more effectively. Cluster 2 consists of highest number of spikelets spike<sup>-1</sup>. Cluster 3 consists of maximum flag leaf area, chlorophyll concentration index and grain yield plant<sup>-1</sup>. Maximum plant height was found in cluster 4. Cluster 6 consists of earliest maturing accessions. Minimum days to heading and physiological maturity was found in cluster 6 and selection for early maturity can be made more effectively from cluster 6.

| Cluster  |       |       |       |       |       |       |            |  |
|----------|-------|-------|-------|-------|-------|-------|------------|--|
| 1        | 2     | 3     | 4     | r     | 5     | 1     | 6          |  |
| Gomal 08 | 10718 | 10724 | 10739 | 10726 | 10777 | 10781 | Hashim 088 |  |
| Zam 04   | 10730 | 10752 | 10786 | 10728 | 10778 | 10782 | Dera 98    |  |
| 10737    | 10754 | 10780 | 10791 | 10731 | 10779 | 10800 | 10743      |  |
| 10741    | 10804 | 10785 | 10796 | 10738 | 10783 | 10802 | 10775      |  |
| 10750    | 10805 | 10797 | 10803 | 10740 | 10787 | 10809 | 10790      |  |
| 10784    | 10806 | 10799 |       | 10744 | 10788 | 11864 | 10801      |  |
| 10807    | 11809 | 11866 |       | 10748 | 10789 | 11865 | 11861      |  |
| 11862    | 11860 |       |       | 10749 | 10792 | 11867 |            |  |
|          |       |       |       | 10751 | 10795 | 11868 |            |  |
|          |       |       |       | 10753 | 10798 |       |            |  |

Table 5.Cluster classification of 65 bread wheat accessions evaluated during<br/>winter 2010-2011

### LITERATURE CITED

- Asif, A.K., A. Iqbal, F.S. Awan, and I.A. Khan. 2010. Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan. Pakistan J. Bot. 42(1): 89-96.
- GoP. 2010. Economic survey of Pakistan. Finance Division, Government of Pakistan, Islamabad.
- Johnson, H. W., H. F. Robinson, and R. E. Comstock. 1955. Estimates of genetic and environmental variability in soyabean. Agron. J. 47 (4): 314-318.
- Kronstad, W.E. 1998. Agricultural development and wheat breeding in the 20th century. In: Braun, H.J., F. Altay, W.E. Kronstad, S.P.S. Beniwal, and A. McNab, (eds.). Wheat: Prospects for global Improvement. Proc. of the 5th Int. Wheat Conf., Ankara, Turkey. Developments in Plant Breeding, v. 6. Kluwer Academic Publishers. Dordrecht. p. 1-10.
- Manjarrez-Sandoval, P., T.E. Carter, D.M. Webb, and J.W. Burton. 1997. RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield. Crop

Sci. 37: 698-703.

- Munir, M., M. A. Chowdhry, and T. A. Malik. 2007. Correlation studies among yield and its components in bread wheat under drought conditions. Intern. J. Agric. and Biol. 9 (2): 287-290.
- Nisar, M., A. Ghafoor, H. Ahmad, M.R. Khan, A.S. Qureshi, H. Ali, and M. Islam. 2008. Evaluation of genetic diversity of pea germplasm through phenotypic trait analysis. Pakistan J. Bot. 40(5):2081-2086.
- Singh, R. K., and B.D. Chaudhary. 1985. Biometrical methods in quantitative genetic analysis. Kalyani Publishers, Ludhiana, New Delhi.
- Steel, R. G. D., J. W. Torrie, and M. Dickey. 1997. Principles and procedures of statistics: A biometrical approach, McGraw Hill Book Comp. Inc. New York.
- Tar'an, B., C. Zhang, T. Warkentin, A. Tullu, and A. Vandenberg. 2005. Genetic diversity among varieties and wild species accessions of pea (*Pisum sativum L.*) based on molecular markers, and morphological and physiological characters. Genome, 48 (2):257-272.