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Owing to established impacts of mass migration, habitat loss and deforestation on biodiversity, it 
is imperative to investigate the global warming on aquaculture welfare and productivity. Our current 
understandings on impacts of altered climate dictate a weak relationship between global warming and 
naturally occurring migrations. However, several models have been presented that elucidate the negative 
impact of global warming on the aquatic biodiversity. While impact of global warming on habitat is 
imperative, additional factors such as predation, food shortage or heavy fishing may exacerbate the climatic 
impacts on the aquaculture biodiversity. Based upon current general consensus among researchers, a 
global legislation and action-plan is required. Additionally, regulatory authorities from both developed 
and underdeveloped countries should enforce the implementation of these legislations. Such initiatives 
are fundamental in conservation of aquaculture, sustainability of increasing food security and to maintain 
the ecosystem of the planet.

INTRODUCTION

Global warming is negatively impacting the natural 
ecosystems by enforcing the glacial melting, sea 

level rise, enhanced lake evaporation, green house effects, 
increase ocean acidity, and biological invasions (Eissa and 
Zaki, 2011). Global warming-induced climatic changes 
affect directly and indirectly on land and water sources 
mainly by disturbing the balances between habitats of 
aquatic and terrestrial species. Climatic changes are 
happening across the globe and impacting the nature and 
dynamics of flora and fauna. The most prominent examples 
include the earlier onset of spring and longer crop growing 
season, which are generally observed in several regions of 
the world (Porter et al., 2013).

Emerging evidences suggest that the deterioration 
of habitats and marine biodiversity are mainly attributed 
to the global warming (GW), pollution load and organic 
matter (OM) pollution (Reddy et al., 2007; Pasha et al., 
2012; Abdullah et al., 2013). These climatic alterations 
are resulting in algal blooms and acidification of marine 
waters. Such algal blooms have been reported from 
different parts of world such as Australia, Japan, USA and 
Europe (Beaufort et al., 2011; Yates and Rogers, 2011). 

In a long-term project, vulnerability of aquatic-
terrestrial ecotones to climate change has been proposed
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(Alahuhta et al., 2011). It has been highlighted that 
destruction of zones with emergent aquatic macrophytes 
in freshwater, wetlands and terrestrial ecosystems caused 
serious ecological problems. After using different climate 
scenarios, determination of occurrence and percentage 
cover of boreal emergent aquatic vegetation were assessed. 
Cumulatively, it was predicted that climate change would 
cause expansion of their distributions in Finland by 2050s 
(Alahuhta et al., 2011).

Recently, Bond et al. (2012) have reported an indirect 
correlation between rise in water temperature of a river and 
defecate number, and time spending at riverside of cattle in 
England. It was mentioned that there may be some effects 
of climate warming contrary to intuitive expectations 
such as decrease in animal-mediated decomposition of 
organic matter and recycling of nutrients (Wu et al., 
2011). Moreover, they reported that there was a positive 
relationship between survival of coprophagous beetles and 
moisture level of dung, which was decreased by heating 
experimentally.

It is reported that there are many invaders from one 
continent to another and many lesseptian species from 
oceans to sea or vice versa (Anonymous, 2007). However, 
there is a paucity of information on their effects on invaders 
or lessepsians that migrated from one to other habitat for 
several non-climatic reasons. This raises main question 
on the impact and degree of climate change on non-native 
species in their new habitats. Can this be reasoned for such 
species for their return to original habitats or if they move 
to another place where they can spread easily? Several 
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efforts have been made to explore logical phenomenon 
to address these questions (Oral, 2010; Willigalla et al., 
2012). Most of these studies are based on the detection of 
a number of such species especially in Mediterranean Sea, 
however, these studies failed to establish foundations that 
help to conserve the populations. 

Today, global warming is the main and emerging 
problem, and several summits have been organized and 
legislations have been made on country- or continent-
based. Keeping in view above mentioned points; the 
present review describes previous studies focusing on 
climate changes and their effects on biodiversity of aquatic 
organisms. This review will help researchers to prepare and 
plan further actions to be undertaken against the potential 
effects of global warming. It is also aimed to figure out the 
interaction of global warming and anthropogenic activities 
with special reference to aquatic biodiversity. Finally, the 
present review aims to summarize the recent published 
data dealing with modelling attempts using sources, 
factors, mechanisms, possible eventual impacts with 
remedial measures to conserve the migratory populations 

of aquatic species. 
Human health and well-being is sustained by the 

critical ecosystem-services provided by biodiversity, 
which has been effected negatively by global warming in 
last decades (Millennium Ecosystem Assessment, 2005). It 
was reported that Nitrogen, as a pollutant, caused losses in 
terrestrial and aquatic biodiversity under climate warming 
conditions (Fig. 1). Moreover, de Vries et al. (2011) have 
concluded that unlike non-agricultural systems, N2O 
emission effects biodiversity, and eutrophication. Due to 
usage of anthropogenic enrichment of reactive nitrogen 
(Nr) deposition, it also negatively impacts the human 
health by potentiating global warming in agriculture 
systems. 

Effects of human activities (Vidal-Dorsch et al., 2012) 
and climate changes on marine ecosystems (Mostofa et al., 
2012) raise serious concerns which require attentions. For 
this purpose, many guidelines and legislative proposals 
have been published in European Union (EU) to mitigate 
effects of climate changes (Papadaskalopoulou et al., 
2016). 

Fig. 1. Conceptual model for direct and indirect effects of global changes on biodiversity. Shown are effects on ecosystem 
biodiversity from elevated nitrogen, CO2 and climate change (elevated temperature and changes in precipitation and hydrology). 
Predominant direction of effect is shown as positive (+), negative (-) or as a possible change in either direction (∆). Changes in 
nitrogen, CO2 and climate can influence biodiversity. Nitrogen and CO2 also can interact with climate to effect on biodiversity 
(Porter et al., 2013).
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Fig. 2. Effects of human on marine ecosystems (adapted from Khan et al. 2013).

MARINE BIODIVERSITY

Coastal marine ecosystems and their biodiversity are 
reportedly affected by global warming. Additionally, sea 
pollution particularly resulting from breaking and recycle 
industry pollutants, overproduction and incorrect disposal 
of pharmaceuticals and overfishing have seriously affected 
the marine diversity (Rooker et al., 2008; Srinivasan et al., 
2010) due to global food shortage (Fig. 2) (Khan et al., 
2013; Mostofa et al., 2013a, b). 

Temperature effects both bacterioplankton 
composition and metabolic rates in the Baltic Sea (Vaquer-
Sunyer et al., 2015). It has been reported that amount of algal 
toxins and naturally-derived toxic emerging contaminants 
(ECs) can cause death of aquatic organisms and humans 
which feed on contaminated fish or seafood (Vaquer-
Sunyer et al., 2015). Graham and Harrod (2009) have 
mentioned that climate change will continuously threat 
biodiversity, structure and function of ecosystems. Global 
warming will have effects on individuals and populations 
of species and communities living in ecosystems. It will 
influence their physiological and ecological processes 
in a number of direct, indirect and complex ways. Each 
species will respond these factors at different levels, which 
are difficult to predict, based on their tolerances and life 
stages. Although adaptation ability of aquatic species to 
expected climate changes may not the same, fish will 
move horizontally and vertically to survive and reproduce 
in water sources. Perhaps some species without shifting 
opportunity will be extinct in near future or become food 
for predators. Williams (1999) argued the re-establishment 

of bottomland hardwood forests and coastal wetland 
grasses for the restoration of wildlife habitats, which serve 
as wildlife corridors, increase biodiversity, and decrease 
soil erosion. 

NATURAL AND ANTHROPOGENIC 
FACTORS AFFECTING THE MARINE 

BIODIVERSITY

Changes in environmental factors due to pollution, 
construction of dams, increasing deposition of woody 
debris from human activities and climate changes effects 
aquatic ecosystems, especially their nutrient and carbon 
cycles. Considering pharmaceuticals as pollutants, they 
are originated from either overproduction or incorrect 
disposal may play an important part in the water pollution. 
There are additional sources of water pollution including 
ship-breaking and recycle industries (SBRIs), overfishing, 
organic matter (OM) pollution and global warming 
(GW). These cause deteriorations of habitats and marine 
biodiversity with algal blooms and acidification. It was 
reported that changes in environmental factors negatively 
effect freshwater lignicolous fungi in Asian/Australian 
regions (Hyde et al., 2016).

RESPONSE OF INVERTEBRATE AND 
VERTEBRATE TO THE CLIMATE CHANGE

It has been reported that range size of pulmonate 
freshwater snail determined by a niche modelling analysis 
will be decreased by 2080 in Central Europe unless 

Impact of Global Warming on Aquatic Animals 355



356                                                                                        

their dispersal abilities match the rate of climate change 
(Cordellier et al., 2012). In Austria, it was figured out that 
invertebrate fauna of Lake Moaralmsee changed due to 
climate warming in past centuries (Luoto et al., 2012). 
In Philippine, it has been observed that direct-developer 
eggs of five different anuran frog populations living in four 
different breeding habitats in a tropical montane rain forest 
were more sensitive to climate warming compared to both 
metamorph and adult life-history stages (Scheffers et al., 
2013). It is also reported that climate warming effects 
stream ecosystems with mostly ectothermic inhabitants 
found in risky dendritic networks at very high level (Isaak 
et al., 2013). 

Kolicka et al. (2015) have reported native and 
alien Rotifera, Copepoda, Polychaeta, Acari and Insecta 
larvae in greenhouses of Poznan in Poland whereas 
Fengqing et al. (2013) have reported stream insects such 
as Ephemeroptera, Odonata, Plecoptera and Trichoptera 
diversities are effected by global warming in South Korea. 
They have cumulatively expected that global warming will 
effect insect populations either at 71.4% extinction level or 
increasing at 66.7% level by 2080. In another study, based 
on macroinvertebrate biodiversity from 521 sites across 
Korea, it was found that macroinvertebrate communities 
such as mayflies, stoneflies and caddisflies of benthic taxa 
living in river ecosystems had highly sensitivity potential 
to climate change. Additionally, it was predicted that global 
warming will have less impact on macroinvertebrates in 
2060s; however, 55% of these species will extinct by 2080s 
with the assumption of ambient temperature increase by 
an average of 3.4°C by the year 2090. It is expected that 
number of cold-water species will decrease and warm 
water species will increase in number. Temporally, their 
population size will increase from 2000 to 2040 followed 
by gradual decrease by 2080 (Fengqing et al., 2013). 

Shah et al. (2014) have suggested a genus-by-genus 
model by using stream insect orders of Ephemeroptera, 
Plecoptera and Trichoptera to determine the consequences 
of climate-change on freshwater biota across North 
America. In another study, Tisseuil et al. (2012) have 
developed a novel methodology by combining statistical 
downscaling and fish species distribution modelling and 
determined the effects of global climate changes on local 
riverine fish diversity in France. With the assumption a 
decrease average annual stream flow by 15% and 1.2°C 
temperature increase by the year of 2100, they expected 
that the majority of cool- and warm-water fish species 
will expand their geographical range within the basin, 
but the number of few cold-water species will reduce. 
Correspondingly, Willigalla et al. (2012) have concluded 
they study that changes in richness of Odonata species 
may be due to the recent increase in Mediterranean species 

which are associated with global warming.
Zaitsev et al. (2016) have reported the effects of fire 

on biodiversity and functional changes in soil communities. 
In order to conserve freshwater biodiversity in the Alps, in 
the case of climate warming, as an innovative method four 
successive and complementary steps related to the upward 
dispersal of species and colonization of new habitats were 
suggested (Oertli et al., 2014). 

Isaak et al. (2013) have developed equations using 
stream temperature and slope to calculate isotherm shift 
rates of ectothermic organisms in streams for the purpose 
of representation historical state, and suggested their 
usage for future warming scenarios about the effects of 
temperature increases on stream biotas. Domisch et al. 
(2013), in another study, developed a distribution model 
by using ensemble of bioclimatic envelope models 
from 191 species (belonging to 12 orders) for stream 
macroinvertebrates considering climate changes in 
Europe. They analyzed climate-dependent changes such 
as endemicity and rarity within European ecoregions, life 
cycle, stream zonation preference and current preference 
in species and their movements to different latitude and 
longitude with respect to thermal preferences of species. 
According to their bioclimatic envelope models, at the rate 
of 99% in the year of 2080, climate will not affect habitat 
conditions for the modelled species. However, there will 
be a decrease in the amount of climatically suitable areas 
and therefore the losses could be of 38-44% on average. 
Therefore, it was advised that distributional changes should 
be investigated to determine the degree of vulnerability of 
freshwater organisms to climate change and to understand 
the consequences for ecological function and biodiversity 
conservation (Domisch et al., 2013).

TEMPORAL CHANGE IN PHYSICO-
CHEMICAL FACTORS OF MARINE 

ENVIRONMENT

It has been found that melting of glacier and associated 
changes in amount of runoff and timing, water from 
additional sources and physico-chemical properties of 
habitat will affect biodiversity of cold stream communities 
(Milner et al., 2009). Sandu et al. (2009) have mentioned 
that climate models are downscaling from global climate 
models to regional climate models as well as from lake and 
catchment models. Therefore, the long-term fluctuations 
and changes of annual precipitation, discharge, and air and 
water temperatures should be monitored and discussed due 
to their potential effects on river morphology and aquatic 
flora and fauna. 

Floder et al. (2010) have investigated ecosystem 
traits by using indices of population dynamics of common 

T. Yanik and I. Aslan



357                                                                                        Impact of Global Warming on Aquatic Animals 357

species and compensatory growth of indigenous species 
due to high salinity caused by global warming and 
eutrophication. Additionally, Dossena et al. (2012) have 
recorded that population size pattern and ecosystem 
functions were altered profoundly by increasing the 
temperature at 4°C which is the expected temperature rise 
at the end of the century. Seifert et al. (2015) identified 
that increasing water temperatures can cause herbivore 
extinctions and strongly effect algal relative abundances. 
They concluded that environmental extremes may prevent 
ecological recovery and reduces success of species by re-
introduction programs. 

Bozinovic et al. (2015) have suggested that 
theoretical and experimental efforts should be used for 
both improvement of understanding of thermal limits of 
organisms and for consideration of multiple stressors from 
land and oceans. They advised that oxygen and capacity 
limited thermal tolerance (OCLTT) might be used for 
explanation of limited thermal tolerance of metazoans. 
Michelutti et al. (2015) have found that there was a 
positive relationship between air temperature and lake 
water temperature in Andean water resources and have 
recorded sudden increase in the planktonic thalassiosiroid 
diatom Discostella stelligera from traces to dominance 
within the phytoplankton in the southern Sierra of 
Ecuador. Accordingly, Penk et al. (2015) have investigated 
the role of temperature on hypoxia sensitivity level of an 
opossum shrimp, aquatic glacial relict-Mysis salemaai, in 
Ireland. They found that rising temperature caused low 
habitat quality and low survival of animals in climatic 
refugia. They advised that species-specific responses to 
temperature increases should be used for predicting future 
distribution patterns, mitigating threats and for prioritizing 
conservation measures to protect global biodiversity. 

It has been proposed that damselfly larvae are sensitive 
to zinc and this sensitivity can be lethal with elevated 
temperature (Dinh et al., 2013). Assuming that temperature 
will increase by 4°C until 2100, they predicted that it will 
cause high contaminant rates through these metals and will 
shape the thermal adaptation along a latitudinal gradient 
either by thermal evolution or migration to lower latitudes. 

In USA, it has been reported that water temperatures 
are increasing by 0.009-0.077°C each year in many 
streams and rivers compared to the air temperature. They 
concluded that if stream temperatures were to continue 
to increase at current rates, there would be a possible 
eutrophication, ecosystem processes such as biological 
productivity and stream metabolism, contaminant toxicity, 
and loss of aquatic biodiversity due to global warming and 
urbanization (Kaushal et al., 2010). These warming effects 
will be observed in habitats including saline coldwater 
springs, supraglacial lakes on ice shelves, epishelf lakes 

in fjords, deep meromictic lakes, and shallow lakes, ponds 
and streams (Vincent et al., 2009).

CLIMATE CHANGE AND BREEDING 
GROUND OF FISHES

Yvon-Durocher et al. (2012) have proven that there 
are significant correlations between seasonal variation in 
temperature, community size structure and carbon fluxes. 
They suggested, using size structure shaped by effecting 
factors, to realize ties between individual organisms 
and biogeochemical cycles for prediction of responses 
of key ecosystem functions for future changes in the 
environment. In their research, Sommer et al. (2012) have 
used AQUASHIFT research program to determine effects 
of global warming on aquatic ecosystems (both marine and 
freshwater) in temperate zone by evaluation of movements 
in geographic distribution, seasonal changes, temporal 
mismatch in food chains, biomass responses to warming, 
responses of growth, harmful bloom intensity, changes of 
biodiversity and the dependence of shifts to temperature 
changes during critical seasonal windows.

In a meta-analytical approach, respond rates of 157 
non-native species and 204 co-existing native species 
against future climatic changes were determined under 
different temperature, CO2 and precipitation conditions. 
It was found that response rates of native and non-native 
species to the environmental changes were generally 
similar in terrestrial vegetative systems, but they responded 
differently at aquatic animal systems. Inhibition of growth 
of native species by increasing temperature and CO2 
indicates that climate change exposes aquatic systems a 
higher risk of invasion (Sorte et al., 2013). Using macro-
scale analysis, negative effects of climate changes on land 
ecosystems were reported by Ostberg et al. (2013).

Bosma et al. (2011) have used a stakeholder-based 
screening life cycles assessment (LCA) in intensive 
farming system for determining and preventing effects of 
critical environment in production of striped catfish. They 
concluded that using managing sludge effectively and high 
quality fish feeds including low aquatic by-products with 
low feed conversion ratio prevented negative effects of 
environmental changes in Pangasius grow-out farming.

Although, it is known that newly introduced non-native 
species are hazardous for biodiversity in any ecosystem, 
the difference between flesh quality of native and invasive 
species cannot be realized by the experienced consumers 
(Caldow et al., 2007). In marine habitats, fish usually 
shifts based on their temperature preferences. Eurybiontic 
species tolerate a wider range of environmental conditions 
more than the typical Arctic inhabitants and therefore they 
gain advantages for optimum growth (Moiseenko et al., 
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2009). Negative effects of climate changes have been 
monitored in the Mediterranean Sea since 1940s. Several 
foreign fish species migrated from Indian Ocean and red 
sea via Suez Canal, Gibraltar or in ballast water, which 
were caught from Mediterranean Sea in recent years. Those 
factors that underlined these shifts are still undermined 
(Oral, 2010). However, it has been reported that there are 
almost 650 fish species living in Mediterranean Sea and 
90 of them reportedly invasive. Also, 30 of these species 
have migrated from Indian Ocean (Anonymous, 2007). 
Considering current data, it is projected that climate 
change will effect catchment size of marine fisheries from 
Mediterranean of Turkey by 2050. 

ANTHROPOGENIC THREATS TO THE 
FISHERIES RESOURCES

Brander (2007) reported that overfishing makes 
ecosystems sensitive to climate change by causing 
decreases age, size and geographical diversity of 
populations and biodiversity of marine ecosystems. It is 
reported that geothermal areas may provide ecological 
passages for aquatic organisms to respond global warming 
(O’Gorman et al., 2014). Modifications in hydrological 
regimes of wetlands by climate change may cause intense 
droughts or inundations. Barros et al. (2014) proposed 
that low or high precipitation might cause either a decline 
in species numbers of mangroves and floodplains or a 
substitution of plant species with adaptation problems 
to new conditions in the Brazilian Amazon. Janssens et 
al. (2014) have reported major factors causing aquatic 
biodiversity including global warming and pesticide 
pollution. They reported that larval pesticide stress and 
adult heat stress interacted across metamorphosis, and 

sensitivity to pesticides may be graded by intraspecific 
evolution along natural thermal gradients. Spatio-temporal 
variations were reported using multivariate techniques 
contributing significantly for change in running water 
quality due to pollution caused by anthropogenic factors 
such as industrial waste, urbanization, agriculture 
intensification and global warming (Qadir et al., 2008; 
Altaf et al., 2015).

Studies have been conducted to determine the effect 
of ultraviolet light-A (UV-A) radiation on the relationship 
between water quality and deepness of lakes at different 
altitudes (Aguilera et al., 2013). DNA from sediments has 
also been used for estimating biodiversitical history of a 
lake (Domaizon et al., 2013). Additionally, using genetic 
parameters, significance of pre-quaternary climate changes 
has been evaluated to further understand the impact of 
global warming in montane salamander species in East 
Asia (Wu et al., 2013). 

To further advance our understanding on the impact 
of climatic changes, a connection has been attributed 
between genetic structure, climatic changes and habitat 
disruptions using a modified landscape genetics approach 
in yellow perch (Perca flavescens) (Sepulveda-Villet 
et al., 2012). Several modelling approaches have been 
reported to develop the lake ecosystems (Mooij et al., 
2010). How climate change will affect the water column 
has been simplified in Figure 3. Likewise, in cold-
water fish populations, warm water fishes will also be 
affected negatively by climate warming. This means, fish 
populations have to migrate to other habitats. This will 
cause hybridizations and probably infertile new species in 
the aquatic environments. In the time course, due to lack 
of offspring rate, the extinction of species may occur in 
natural fish populations. 

Fig. 3. Effects of climate warming on cold-water fish populations living in still waters. Stagnation period gets longer and H2S 
increases in deep areas, acidity increases with increase of CO2 emissions from atmosphere, available food reduces in time and 
spawning does not occur in normal timing or no spawning occurs due to elevated temperatures.
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ANTHROPOGENIC THREATS VS CLIMATE 
CHANGE

Ng and Gray (2011) have mentioned that climate 
change will have negative effect on biodiversity of aquatic 
species and will affect predator-prey dynamics, which may 
result into a substantial shift. Pilas and Planinsek (2011) 
have reported that negative effects of climate changes in 
lowland forests can be reduced or prevented by applying 
new water usage methods including various forest 
managerial and engineering practices for preventing long 
term droughts and saving groundwater for future. 

Verberk et al. (2011) have suggested using oxygen 
supply index model derived from classic first law of 
diffusion of Fick in prediction of reactions of aquatic 
communities for ongoing global climate shifts in 
aquatic ectotherms. One of the main causes of decline 
of freshwater biodiversity was considered as biological 
invasions caused by climate change (Maazouzi et al., 
2011). With presuming of rising temperature globally, 
geographical distributions of native and invasive species 
will be altered. Comparing temperature sensitivity of 
invader (killer shrimp, Dikerogammarus villosus) and 
local species (Gammarus pulex) idntifed that invader are 
more vulnerable to high temperatures than local species, 
highlighting that global warming is less favourable to the 
invasive species.

Boyero et al. (2012) have conducted a worldwide 
study and highlighted that climate change altered stream 
detritivore distribution in tropical streams. Using a 
statistical model, Jenny et al. (2014) have proven that 
global warming caused increases in hypoxic conditions 
occurring water systems due to negative climatic factors 
originated from river discharge and air temperatures. 
They suggested that controlling river discharge might be 
a complementary strategy to mitigate hypotic conditions 
for local management of lakes fed by large river systems.

Porter et al. (2013) have stated that in the last 50 years, 
it has been at accelerated rate for the loss of biodiversity 
due to human activities and some other factors such as 
habitat loss, over exploitation, invasive species, climate 
change, and pollution. Provided that global climate 
change has major effects on wetlands and ecosystems, it 
is suggested that ecological risk assessments should be 
prepared to preserve aquatic biodiversity (Stoks et al., 
2015). It is predicted that there will be a loss of suitable 
habitat in northern inland distribution and increase in 
coastal habitats of salt marsh morning glory (Ipomoea 
sagittata) in the Gulf of Mexico by the year of 2080 
(Huerta-Ramos et al., 2015). Ashraf et al. (2012) have 
recommended that worldwide attentions should continue 
to save ecosystems and biodiversity in both terrestrial 

and aquatic ecosystems as the risks still valid for habitat 
degradation due to emitting air pollutants, ozone layer 
depletion, global warming, heavy metal contamination 
and eutrophication of water bodies.

CONLUSION AND PROSPECTS

In light of the current understandings and assumptions, 
the impacts of global warming, invasionism, lessepsianism, 
and endangerism on the aquatic populations and their 
ecosystem are undeniable. Therefore, it is imperative to 
declare that climate warming will cause extinction of 
some aquatic organisms as well as fish species by 2080 or 
2100. While the global warming is happening, it remains 
to be determined the impact of unbalanced transfer of 
aquaculture, interactions between naturally occurring 
migrations and global warming-triggered relocation, and 
potential of artificial fish releases in the affected medium. 
Further research is warranted to evaluate the impact of 
climatic changes on the endangered species, regionally, 
nationally and globally.

Based on the current data, it is imperative to propose 
strict global legislation including special precautions 
on preserving reproduction habitats and restriction of 
overfishing. These regulations are crucial to safeguard 
natural environments and prolong the inevitable impact 
of climate change on the aquaculture. Additionally, 
prey-predator relationships must also be monitored and 
precautions must be applied to avoid extinction of the 
indigenous and newly introduced species in order to save 
the diversity and to maintain the species-balance. 
Finally, it is essential to assess the impact of human activ-
ities that may alter the natural ecosystem and influence the 
habitat of aquatic animals. For instances, the influence of 
opening Suez channel on the migration patterns of lessep-
tian species has not been well planned and anticipated. 
Therefore, research is required to measure the degree of 
such activities on natural environments.
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