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Bacteria use a variety of mechanisms to transport proteins synthesized in the cytoplasm to the outer 
membrane or extracellular environment of the bacterial cell, or directly to other cells. The bacterial 
secretion system plays an irreplaceable role in this process. Up to now, at least 11 kinds of secretion 
systems are involved in the pathogenesis role of bacteria, especially the formation of bacterial resistance. 
Therefore, the study of the bacterial secretion system is of great significance for antibiotic treatment of 
bacterial diseases. Most of the secretion systems identified so far are found in Gram-negative bacteria. 
There are a few secretion systems in Gram-positive bacteria, such as type VII secretion system, which is 
found in Mycobacterium tuberculosis. T5SS may be the simplest secretion system available among all 
the secretion systems, and plays a vital role in the pathogenic mechanism of bacteria by participating in 
bacterial adhesion, biofilm formation, and contributing to the ability of nutrition acquisition a nd environme 
ntal adaptability. T5SS is a vital factor in the gradual reduction of antibiotic effectiveness, so the system 
has been the target of alternative antimicrobial strategies based on small molecules and antibodies. This 
review mainly introduces the discovery history of the bacterial secretion system, structure, and function 
of T5SS, and summarizes its potential applications and existing issues. Presently we have not elucidated 
the specific pathogenic mechanism of this system, thus the intensive study is significant.

INTRODUCTION

The investigation has shown the existence of at least 
11 secretion systems in bacteria that are associated 

with pathogenicity (Dautin, 2021). Type 1 secretion 
system (T1SS) is defined by ABC transporter, membrane 
fusion protein and outer membrane protein, which can 
cooperate to directly transport the matrix of T1SS to the 
outer membrane of bacteria (Thomas et al., 2014). The 
first T1SS was hemolysin A discovered in uropathogenic 
Escherichia coli causing pyelonephritis (Welch et al., 
1981), and it had a remarkable effect on the virulence of 
pathogenic germs (Goebel and Hedgpeth, 1982; Mackman 
and Holland, 1984). 
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Type 2 secretion system (T2SS) possesses 
homologous components and conserved mechanisms, 
which is a macromolecular compound that spans many 
Gram-negative bacteria and is part of the type IV pili system 
(Naskar et al., 2021). T2SS can be divided into three subunit 
complexes: An outer membrane protein complex, an inner 
membrane complex, a pseudo-pilus (Dupuy and Pugsley, 
1994). These features of T2SS pledge the performance in 
bacterial adhesion, biofilm formation, nutrient acquisition 
and host invasion (Cianciotto and White, 2017), and 
indirectly boost the generation of antibiotic resistance 
among bacteria (Santajit and Indrawattana, 2016). Type 3 
secretion system (T3SS) was first proposed in 1991, when 
researchers observed that Yop protein of Yersinia was 
transported into host cells in a non-sec-dependent manner. 
Subsequently, T3SS of Salmonella was discovered in 
1998 through negative staining andelectron microscopy 
(Kubori et al., 1998). T3SS was also found in E. coli in 
2001 (Sekiya et al., 2001). Some strain encode the second 
T3SS, known as ETT2 (Slater et al., 2018), which was first 
discovered in Enterohemorrhagic E. coli (EHEC) through 
genome sequence analysis, and are widely distributed in E. 
coli isolated from humans and animals (Xue et al., 2020; 
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Wang et al., 2016). Type 4 secretion system (T4SS) refers 
to the bacterial secretion system naturally related to the 
bacterial conjugation mechanism (Lawley et al., 2003; 
Christie et al., 2005). As T4SS transport all nucleic acid-
protein complexes, T4SS is relatively unique in bacterial 
secretion system (Juhas et al., 2008). Type 5 secretion 
system (T5SS) is the subject of this article and will not 
be discussed here. T6SS (Pukatzki et al., 2006) was 
first published in 2006, but does not seemingly involve 
Sec transport of periplasmic intermediates, commonly 
found in Proteus, including Vibrio cholerae, E. coli, 
and Pseudomonas aeruginosa (Boyer et al., 2009). The 
virulence effect of T6SS conferred on various pathogens 
has been confirmed, it could affect the behavior of 
pathogens in phagocytes (Pukatzki et al., 2009; Ma et 
al., 2009), but importantly, conduce to the formation of 
bacterial biofilm and the killing of other bacteria (Aschtgen 
et al., 2008; Hood et al., 2010). Being a relatively rare 
secretion system that is active in Gram-positive strains, 
type 7 secretion system (T7SS) was first discovered in 
the study of Mycobacterium tuberculosis (Paulson, 2013), 
and mainly plays a key role in effector protein secretion 
of non-pathogenic and pathogenic mycobacteria (such 
as Mycobacterium tuberculosis, the main pathogen of 
tuberculosis). 

In 1989, Normark and his colleagues (Olsén et al., 
1989; Bhoite et al., 2019) reported on the fiber surface 
structure of E. coli suspected to lead to mastitis in dairy 
cow. Many studies have subsequently revealed a highly 
regulated biogenic pathway of Curlybacter (Dueholm 
et al., 2012), known as type 8 secretion system (T8SS). 
There are not too many studies on type 9 secretion system- 
type 11 secretion system (T9SS-T11SS) at present, so 
I will not elaborate here. In T1SS-T8SS, most of the 
secretion system are primarily beneficial to Gram-negative 
bacteria, T1SS, T3SS, T4SS, T6SS as well as T7SS are 
composed of protein complexes across the inner and 
outer membrane, and promote secretion through one-
step method (Rêgo et al., 2010). Additionally, T2SS, 
T5SS, T8SS and the chaperone-usher (CU) pathways rely 
on Sec or Tat translocation across the inner membrane. 
The final translocation is mediated by specific secretion 
mechanisms, resulting in effector proteins released into the 
extracellular space or presented on the cell surface (Dautin 
and Bernstein, 2007).

 
THE STRUCTURE OF T5SS

There are multifarious secretion systems in negative 
bacteria, being divided into two categories according to 
their architectural feature: the first is the large molecular 
secretion complex that can span the inner and outer 
membrane of bacteria and the periplasmic space; the latter 

is the independent secretion mechanism that can pass 
through the membrane structure of bacteria (Fan et al., 
2016). 

T5SS is conceivable the simplest one among bacterial 
secretion systems at present owing to most of the secretion 
systems in T5SS containing only one peptide chain (Fan et 
al., 2016). Moreover, T5SS relies on a polypeptide chain to 
transport through the outer membrane of bacteria without 
the consumption of energy such as ATP and cofactors, so 
T5SS is identified as self-satisfied autotransporter (AT) 
(Jose et al., 1995; Thanassi et al., 2005; Drobnak et al., 
2015; Oberhettinger et al., 2015). With the in-depth study 
of T5SS, although the secretion of ATs depend on manifold 
substances that we have found, the energy required in 
the process of T5SS transport has not been specifically 
described (Thanassi et al., 2005). T5SS is mainly divided 
into five important subtype Va-Ve (Thanassi et al., 2005), 
and a new type Vf was recently discovered (Grijpstra 
et al., 2013). T5SS is a multi-domain protein, despite 
it comprises plentiful isoforms (Pohlner et al., 1987; 
Henderson et al., 1998). 

The construction of all T5SS subtypes that we 
familiar with, were distinguished by the three-dimensional 
structure of AT, including passenger-protein in T5SS 
precursor polypeptides and the mutual organization of 
these domains (Dautin, 2021). The structure of T5SS 
has been thoroughly studied with obtaining relevant 
data except for the translocation domain of Vd and Vf 
(Oomen et al., 2004; da Mata Madeira et al., 2016; Hage 
et al., 2015). All subtypes share a common domain, which 
mainly includes three parts (Jose et al., 1995; Henderson et 
al., 1998, 2004): (1) Signal peptide sequence: Proteins can 
be targeted to the inner membrane of the bacteria to deliver 
them to cyto-periplasm. (2) Passenger domain: Passenger 
domain endows self-transporters with various functions of 
effectors. (3) Translocation domain: Translocation domain 
at C terminal contains a short linker domain; this domain 
has an α-helical secondary structure and a β domain, 
where the β domain adapts to the insertion of the β-barrel 
secondary structure into the outer membrane (Maurer 
et al., 1999; Oliver et al., 2003a), and the translocation 
domain assists in the transport of the passenger domain to 
the cell surface (Leyton et al., 2012). Transport of T5SS 
through bacterial inner membrane depends on the Sec 
system (Driessen and Nouwen, 2008), mainly through the 
cleavable N-terminal signal peptide sequence (Henderson 
et al., 2004). The translocation domain then forms a 
translocation hole on the outer membrane of the bacterium, 
through which the passenger domain secretes (Fan et al., 
2016). The fate of three ATs are vivid emerging in Figure 
1. So how do we distinguish between these different 
subtypes? This principally hinges on the discrepancy 
of domain composition and transport mechanism. The 
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structure of each subtype together with related transport 
mechanism will be introduced below.

Fig. 1. Schematic overview of type V secretion mechanism. 
Yellow represents the N-terminal signal peptide, passenger 
domains are shown in red, while translocation domains in 
green. There are three different fates to passenger domains. 
Passenger of adhesin YadA is uncleaved after secretion 
through translocation domain; instead the Ag43/AIDA 
are cleaved; For Hap, previous two cases may occur in 
different situation.

Type Va is the most classic of T5SS, being referred 
to as the classical AT (Jose et al., 1995; Desvaux et al., 
2004). Focus issue is that how gene encoding the Neisseria 
gonorrhoeae immunoglobulin A1 (IgA1) protease well 
establish the connection with its extracellular product, 
(Pohlner et al., 1987) explained with a model of T5SS. 
IgA1 is the first AT of type Va. EstA lipase in Pseudomonas 
aeruginosa and IgA are two ATs that have been researched 
abundantly in type Va (Henderson et al., 2004). The 
AT contains a β-barrel domain composed of 12 peptide 
chains, which acts as C-terminal anchor in OM, and is 
necessary for transport of N-terminal passenger domain to 
the extracellular environment (Oomen et al., 2004). Type 
Va called canonical AT, resembling the common structure 
of T5SS described above, possesses single polypeptide 
chain, mainly including three parts of the domain: Signal 
peptide sequence, passenger domain and translocation 
domain. The signal peptide sequence at the N-terminal 
of the peptide chain can target the target protein to the 
inner membrane so as to facilitate the transport of the 
target protein to the periplasm (Henderson et al., 1998). 
The passenger domain, known as the α domain, endows 
several ATs with different functional factors. Located at 
the C-terminal, the translocation domain contains a β-pore 
connecter, which enhances the metastasis of passenger 
domain to the outer membrane (Maurer et al., 1999; Oliver 
et al., 2003a, b; Suzuki et al., 1995).

Type Vb is composed of two diverse polypeptide 
chains encoded by an operon, intituled (given titles) as 
the two-partner secretion system (TPSS). Bordetella 

pertussis filamentous hemagglutinin (FHA) is a prominent 
representative (Chevalier et al., 2004; Jacob-Dubuisson et 
al., 2013). Jacob-Dubuisson has put forth the term TPSS 
to draw a number of protein secretion systems that are 
isogenous and distinct from those previously defined in 
Gram-negative bacteria (Jacob-Dubuisson et al., 2001). 
It was soon recognized as a branch of T5SS along the 
AT pathway (Henderson et al., 2004). This classification 
was originally based on some common features between 
the two traits, but transporters of the Omp85 superfamily 
were irreplaceable in the secretion of type Vb (Jacob-
Dubuisson et al., 2013). The TPSS consists of two parts: 
The translocation domain and the passenger structure are 
two separating polypeptide chains. The passenger domain 
or secreted protein is collectively known as TpsA, while 
the outer membrane protein involved in transport, namely 
the translocation domain, is TpsB. Like other secretion 
systems that rely on signal peptides, TPSS primarily uses 
the Sec mechanism to export TpsA to the periplasmic 
membrane, subsequently TpsB is inserted into the outer 
membrane and forms a β-barrel with channel activity to 
mediate the secretion of TpsA (Henderson et al., 2004; 
Jacob-Dubuisson et al., 2004), accompanied by the break 
of signal peptide in the process of transport.

Compared with other T5SS subtypes, type Vc is 
probably the most complex subtype. Type Vc is composed 
of three polypeptide chains, and most of them have the 
function of bacterial adhesins, thus they are called trimer 
autotransport adhesins (TAAs) (Linke et al., 2006). These 
proteins are constitutive of three identical polypeptide 
chains, eventually forming a trimer, which is assembled 
by a C-terminated 12-chain β-barrel (four β-chains per 
monomer) and a passenger domain, such as a lollipop 
structure with a curly helical handle and an N-terminated 
globular head domain (Linke et al., 2006; Hoiczyk et 
al., 2000; Wollmann et al., 2006). Unlike classical ATs, 
the TAAs passenger domains remain covalently sticked 
to the β-barrel membrane anchors (Wollmann et al., 
2006), without chopping out after secretion (Wollmann 
et al., 2006). The most intensively studied AT in TAAs 
is Yersinin adhesive A (YadA) (Mühlenkamp et al., 
2015), both of which are obligate homologous trimer 
proteins consisting of N-terminal passenger domains and 
C-terminal translocation units. The N-terminal passenger 
domain is advantageous to the combination. The constant 
C-terminal domain is referred as a translocation unit to 
transport the passenger domain through outer membrane 
to the extracellular environment.

Type Vd is a 16-chain β-barrel structure homologous 
to TpsB formed by the combination of an N-terminal 
passenger domain, a single POTRA (polypeptide transport-
related) domain and a C-terminal domain (Salacha et al., 
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2010). TpsB has two POTRA domains that bind to TpsA 
substrates in order to stimulate secretion (Leo et al., 2012; 
Brzuszkiewicz et al., 2009). Some AT passenger domains 
in type Va, such as EstA (Brzuszkiewicz et al., 2009). have 
α/β hydrolase folding structures, which are similar to type 
Vd (da Mata Madeira et al., 2016; Emsley et al., 1996). 
Therefore, type Vd is equal to the heterozygotes of Va and 
Ve subtypes, PlpD in Pseudomonas aeruginosa and FplA 
in Fusobacterium are quintessential examples (Salacha et 
al., 2010; Casasanta et al., 2017). The overall structure 
of type Vd is incredibly similar to type Va, except that 
these domains are connected by an additional periplasmic 
domain homologous to the periplasmic domain of type Vb 
translocation pore (Fan et al., 2016).

Structure of Ve is quite peculiar. The C-terminal 
is a slender passenger domain composed of multiple 
independent immunoglobulin-like domains (Oberhettinger 
et al., 2012, 2015), while N-terminal translocation domain 
is a 12-chain β-barrel formed in the extracellular membrane 
(Hamburger et al., 1999; Fairman et al., 2012; Leo et al., 
2015b). The passenger domain of Ve is immunoglobulin-
like or hemagglutinin like, which is absence in other T5SS, 
but widely present in Gram-positive bacteria (Bateman et 
al., 1996; Bodelón et al., 2013). Type Ve secretion systems 
contain a periplasmic domain at the N-terminus of the 
polypeptide chain, which may play a certain auxiliary 
role in the dimerization and interaction of peptidoglycan, 
possibly anchoring it and promoting the interaction 
between receptors during host invasion (Leo et al., 2015a).

Type Vf is the most controversial subtypes initially 
discovered in recent years, BapA and SabA are typical 
representative, which seem to be unique to H. pylori, have 
a surface-exposed domain inserted into the N-terminal 
region between the first and second β chains of the 8-chain 
β-barrel domain, and contain few additional passenger 
domains at either the ends off peptide chain. Therefore, 
passenger domain is actually an extended ring of the 
β-barrel domain, which is smaller than any AT (Coppens 
et al., 2018). Although BapA and related proteins are 
considered as ATs, their topology is quite dissimilar to 
other types of ATs (Meuskens et al., 2019). The topological 
structure of Hop C-terminal domain is different from others. 
For Hop, multiple sequence alignment and transmembrane 
β-chain prediction indicate that there are 7 β-chains in 
the C-terminal domain (Alm et al., 2000), but general AT 
structures share a common 12-chain β-barrel structure, 
monomer ATs are made up of consecutive 12 β-chains, 
and trimer ATs are composed of three 4-chain β slices in a 
composite β-barrel structure (Oomen et al., 2004; Leyton 
et al., 2012; Meng et al., 2006). Therefore, it is doubtful 
whether type Vf should be confirmed as a member of 
T5SS, and further study of their secretion mechanisms is 

needed to determine if these proteins actually transport 
in a manner similar to other ATs.The structure of T5SS 
subtypes previously mentioned are exhibited in Figure 2.

Fig. 2. Schematic V secretion system subclasses. Β-barrels 
and POTRA domains are shown in green, linkers and 
TPS domains in red, and passenger domains in blue. The 
periplasmic extension of type Ve proteins is in golden. The 
positions of the N- and C-termini are indicated. Type Vf is 
not fully established as part of T5SS.

FUNCTION OF T5SS

Most of the ATs by T5SS are the expression products 
of bacterial virulence factors, contributing actively to 
the pathogenic mechanism of bacteria. T5SS is mainly 
found in Gram-negative bacteria and plays a synergistic 
role in bacterial pathogenicity, such as bacterial invasion 
(Capecchi et al., 2005), serum resistance (Attia et al., 2005), 
adhesion (Bullard et al., 2005), biofilm formation (Valle et 
al., 2008). Adhesion is the first important step for a large 
proportion of intestinal microorganisms to colonize and 
persist in the intestinal tract of the host (Pizarro-Cerdá and 
Cossart, 2006), which lays a foundation for the subsequent 
formation of bacterial biofilm and the operation of other 
pathogenic effects. Adhesin plays an important role in the 
pathogenicity of pathogens. Adhesin-like ATs exist in all 
subtypes of T5SS, such as AIDA (Laarmann and Schmidt, 
2003) and EhaA (Charbonneau et al., 2006) in type Va; 
Adhesion of Bordetella pertussis and FHA of in type Vb 
(Aricò et al., 1993; Serra et al., 2011); YadA of Yersinia in 
type Vc (Tertti et al., 1992) and E. coli tight adhesion in 
type Ve (Kenny et al., 1997).

In the evolution process of continuous struggle 
between bacteria and host, the strategies of bacterial 
adhesion to host cells have undergone great changes. 
Autotransporter proteins promote bacterial adhesion to 
host cells by forming biofilm (Hall-Stoodley et al., 2004; 
Yan and Bassler, 2019), non-covalent binding (Sauer et al., 
2016) or direct covalent binding (Walden et al., 2015). The 
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formation of biofilm can significantly enhance the virulence 
of bacteria and lead to host asthenia, for instance, the ATSs 
YrInv and YrIlm of type Ve in Yersinia ruckeri (Wrobel 
et al., 2020). Dirk linke (Wrobel et al., 2020) confirmed 
through that the self-transporters YrInv and YrIlm 
colonized on the surface of host cells and participated in 
the formation of biofilm. The well-understood AT Ag43 
significantly strengthens the formation of bacterial biofilm, 
mainly due to the eminent cell aggregation properties of 
Ag43, and Ag43 is a unique self-identifying adhesin, on 
account of all receptor recognition and receptor targets are 
provided by the same polypeptide (Kjaergaard et al., 2000; 
Hasman et al., 1999). These traits are crucial reasons to 
promote the formation of bacterial biofilm.

Why biofilm formation is beneficial to the 
pathogenicity of bacteria? Because it can make bacteria 
attach to the host cell more stable than the free state, and 
it is not easy to be washed away by the flowing liquid. 
Meanwhile, it can resist the bactericidal effect of many 
antibiotics, which is a crucial reason for bacteria to 
develop drug resistance (Costerton et al., 1999). Overall, 
the AT secreted by T5SS indirectly enhances the virulence 
and pathogenicity of bacteria by promoting the formation 
of biofilm. 

AT can participate in the pathogenic activities 
of bacteria through the functions of lipase esterase 
protease and other enzymes (da Mata Madeira et al., 
2016; Casasanta et al., 2017; Ocampo et al., 2021). The 
representative AT EstA with lipase domain plays multiple 
roles in the pathogenic process of bacteria, primarily 
involving in the formation of bacterial biofilm (Davey 
et al., 2003; Tielen et al., 2010), motility of bacteria 
(Wilhelm et al., 2007) and lipid hydrolysis of bacteria 
(Carinato et al. 1998), as well as cell signal transduction 
(Riedel et al., 2003). Protease ATs can be classified into 
three categories: Enterobacteriaceae serine protease ATs 
(SPATEs); Non-SPATEs class ATs, SPATEs like AT. EspP, 
the model of SPATEs (Roman-Hernandez et al., 2014), is a 
vital virulence factor of EHEC, playing a role in cytotoxic 
adhesion and biofilm formation. Generally detected in 
Diarrheagenic E. coli (DEC), EspP can cleave molecules 
of the complement system, exacerbating the severity 
of hemolytic uremic syndrome caused by EHEC (Orth 
et al., 2010).  SPATEs like ATs are represented by IgA 
protease (Diebel et al., 2004), while Non-SPATEs ATs, 
represented by NalP (Arenas et al., 2013), are involved in 
the pathogenic effect of bacteria on the host.

Pathogens that invade tissues and spread 
systematically before encountering innate immune 
defenses of complement is based on the ability to 
evade the various killing mechanisms initiated by the 
complement cascade. These mechanisms include cleavage 

of membrane-attacking complexes formed by the outer 
membrane of Gram-negative pathogens, opsonization by 
complement components, and recruitment of phagocytes 
through production of allertoxins (Ehrengruber et al., 
1994; Klos et al., 2009). Some bacteria can survive and 
proliferate in serum, which is related to T5SS. Numerous 
ATs of T5SS destroy complement molecules in serum to 
stimulate the proliferation of bacteria. YadA (Schindler et 
al., 2012) adhesin of Yersinia colitis and Vag8 (Marr et al., 
2011) adhesin of Bordetella pertussis, for example, inhibit 
the cascade reaction of complement by binding with 
complement protein to avoid bacterial lysis. Therefore, 
T5SS is of tremendous significance in the serum resistance 
of bacteria. 

T5SS is versatile, in addition to the above functions, 
including participation in contact-dependent growth 
inhibition (CDI) (Guérin et al., 2017), bacterial aggregation 
(Trunk et al., 2018), bacterial invasion, cytolysis (Reboud 
et al., 2017) and immune intrusion (Schindler et al., 2012), 
etc. However, due to the lack of in-depth understanding of 
some pathogenic mechanisms, urgent studies are needed to 
clarify its role in pathopoiesia. 

THE POTENTIAL APPLICATION OF T5SS

England’s Chief Medical Officer Dame Sally Davies 
had said that the issue of continuous antibiotics like climate 
action, affecting daily lives in no small way (Wiersinga et 
al., 2020). The rapidly expanding AT family is the largest 
of Gram-negative bacteria toxicity protein family, contains 
more than 700 different virulence factor, associated with 
many diseases, such as meningitis, septicemia perineum 
pericarditis Otitis media, sinusitis, pneumonia, diarrhea, 
septicemia, and peptic ulcer (Henderson and Nataro, 
2001). As a result, developing treatments and strategies for 
drug-resistant superbugs is imperative and urgent. Now it 
is clear that the adhesion and the adhesion and aggregation 
of bacteria is the first and pivotal step on the bacteria 
invade the organism and induce disease (Fux et al., 2005). 
T5SS pathogenic mechanism in gram-negative bacteria 
play a vital role in the first step (Dunne, 2002), so utilizing 
the function of T5SS in bacterial pathogenesis mechanism 
to research related biological products, for reducing the 
morbidity and mortality caused by Gram-negative bacteria 
are of real significance. Next, we will discuss the specific 
strategies and the prospects for future research of taking 
advantage of T5SS to prevent Gram-negative bacterial 
diseases.

Evidences from previous studies reveal that encoding 
sequence and function of T5SS subtypes are increasingly 
diversified while their secretion mechanisms conforming 
to the same path, so we can take advantage of this trait 
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inhibiting bacterial secretion system running. Haemophilus 
influenzae outer membrane protein D15, a homologue 
of Omp85, has been shown to be highly immunogenic 
in animal models such as mice, guinea pigs and rabbits 
(Loosmore et al., 1997). FhaC structure is an Omp85-like 
homologue in the TPS secretion system, from which a 
prospective drug design strategy can be derived (Clantin 
et al., 2007). Currently, a few major recombinant vaccines 
with ATs have been applied into clinical, for instance, 
the acellular vaccines composed of FHA and Pertactin 
(Whelan et al., 2020).

Ag43 induces interspecific cell-to-cell contact and 
promotes the formation of biofilm of multiple species. 
The data (Kjaergaard et al., 2000) indicates that the 
multi-functional molecular tool is used in reasonable 
design for multi-species biofilm. More specifically, 
this new technique provides the opportunity to design 
multi-species collaborations, which are necessary for 
bacterial collaboration, such as waste treatment and 
pollutant degradation, affording new ideas for ecological 
applications of bacterial T5SS. In addition, bacterial 
biofilm formation has an effect on the development of 
bacterial drug resistance, reducing or eliminating the ability 
of bacteria biofilm formation can inhibit the generation of 
the antimicrobial resistance. Therefore, interfering with 
T5SS transporter can achieve inhibiting the formation of 
bacterial biofilm, which offers a new way for the antibiotic 
treatment of bacterial disease.

THE PROBLEMS TO BE SOLVED AT 
PRESENT

Some studies have confirmed the initial model of 
T5SS, but it has been doubtful because several important 
questions about the structure and function of this 
pathway remain to be resolved: (1) what energy drives 
secretion in the passenger domain? (2) Whether there are 
auxiliary factors involved in the process of periplasmic 
transport and assembly to the outer membrane? (3) Is the 
secretion mechanism of AT of each subtype consistent? 
(4) What role does POTRA domain play in type Vc? 
(5) What are the factors involved in the course of cell 
surface protein generation? Are intrinsic factors, such as 
the self-chaperone domain, required for AT secretion? 
Existing research strategies in some laboratories will 
no doubt resolve these dilemmas in the coming years, 
providing a fuller understanding of secretion mechanisms 
and perhaps revealing new variations on the subject 
of T5SS. For example, it was previously thought that 
the trimer auxilin in T3SS secretion coordinates the 
secretion of three polypeptide chains (Grin et al., 2014), 
the latest studies prefer the simultaneous secretion of 

three passenger domains in the Vc subtype (Chauhan 
et al., 2019). Meanwhile, some scholars (Whelan et al., 
2020) suggested that T5SS promotes the rearrangement 
of bacterial cytoskeleton in coordination with T3SS, then 
protecting bacteria and mediating the pathogenic effect of 
bacteria on organs.We highly look forward to the brilliant 
breakthrough in clinical application or mechanism when 
the unsovled issue about T5ss would be clarified.
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