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Ovarian follicles develop through several distinct phases during fetal and postnatal periods and they 
release their matured ova upon puberty. A finite number of primordial follicles form in the fetal ovary from 
primordial germ cells (PG) during the first stage of fetal development. The primordial follicles consist 
of oocytes surrounded by a single layer of pregranulosa follicular cells and they remain dormant in the 
meiotic prophase I stage. Primordial pregranulosa follicular cells initiate activation of primordial follicle 
and govern the development of dormant oocytes. The primordial follicles take about 6 months to grow and 
develop to ovulatory graafian follicles in cattle and humans. Growth of preantral follicles is gonadotropin-
independent whereas growth of antral follicles is gonadotropin-dependent. Changes occur during these 
stages in mammalian ovarian follicles to prepare the oocyte for successful maturation, fertilization and 
further embryonic development. The changes enable the zygotes to overcome maternal zygotic transition 
stage and follow their developmental competence to fetus. The changes were affected by in vivo and 
in vitro molecules and factors of the organisms and the surrounding conditions, respectively. Because 
of the importance of follicular changes during growth and development stages, which reflected in the 
developmental competence of oocytes, an attempt was made in this review to collect and combine the 
current knowledge on growth, development and maturation of ovarian follicles and resulting oocytes and 
their applications in assisted reproductive techniques.

INTRODUCTION

Matured oocytes (metaphase II stage) originate from 
primordial germ cells (PGs) by extensive processes 

starting since early embryo stage to cycling organism. 
Primordial germ cells in the early embryo migrate to 
the gonadal ridge to continue their development from 
oogonia to oocytes. Oogonia in ovaries of embryos 
are found in germ cell cysts, which developed to form 
primordial follicles through their interaction with 
pregranulosa cells and they arrest in meiotic prophase I 
(Pepling and Spradling, 2001; Lechowska et al., 2011; 
Sorrenti et al., 2020). 

The total number of ovarian primordial follicles is
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considered the determinant of the reproductive lifespan of 
mammals (Findlay et al., 2015). Primordial follicle pool 
in humans (Adhikari and Liu, 2009) and cattle (Yang and 
Fortune, 2008) is established around 15-22 and 13 weeks 
of gestation and continued to increase until just after birth.   
A limited number of primordial follicles are only initial 
recruited into the growing follicle pool and the remaining 
is either maintained in a quiescent state or die directly 
from this quiescent state. Majority of ovarian follicles 
degenerates through process known as follicle atresia by 
puberty, leaving only about 400,000 follicles available 
in the reproductive life in human. About 400 of these 
ovarian follicles will be ovulated. Primordial follicles 
are in quiescent state and is suggested to activate through 
autocrine and/or paracrine actions. About 1,000 dormant 
primordial follicles are activated each cycle in human (Fig. 
1). Majority of activated follicles degenerates but only a 
few reaches pre-ovulatory follicle stage.

It has been found that primordial follicle granulosa 
cells control the activation of primordial follicles through 
signaling (Zhang et al., 2014). Primordial follicles, upon 
activation, grow and develop to reach the preantral and 
antral follicle stages, respectively. During the ovarian 
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stages, oocytes grow, granulosa cells proliferate and theca 
cells differentiate (Richards and Pangas, 2010). Growth of 
preantral follicles is gonadotropin-independent whereas 
growth of antral follicles is gonadotropin dependent 
follicles. It has been well known that reproduction in 
cycling mammals requires synchronization of intraovarian 
and extraovarian signals from hypothalamus, pituitary, 
and ovary (HPO) axis.

Fig. 1. Development of primordial follicles during fetal 
and cycling periods in human.

With the advent of assisted reproductive techniques 
(ARTs) in mammals (Mohammed, 2014a, b, 2018, 
2019a, b; Mohammed et al., 2020, 2021; Mohammed 
and Al-Hozab, 2016, 2020; Mohammed and Farghaly, 
2018), regulating ovarian follicles development either in 
vivo or in vitro becomes necessitate (Senosy et al., 
2017; Mohammed et al., 2012a, 2021; Ali et al., 2021) 
to combat fertility disorders and enhance reproductive 
performances (Senosy et al., 2017, 2018). Improvement 
of assisted reproductive techniques through ovarian and 
oocyte manipulation, in vitro embryo production (IVEP) 
and cryopreservation has been intensively investigated 
(Mohammed et al., 2005, 2008, 2010, 2011a, b, 2019a, 
b; Condorelli et al., 2021). In addition, ovarian tissue 
cryopreservation and transplantation are more recently 
implemented methods of preserving ovarian tissues due to 
infertility of cancer treatments (Christianson et al., 2021) or 
preserving endangered animals’ species. Therefore, there 
is an unmet need for a more detailed understanding of the 
regulatory mechanisms of primordial follicle recruitment 
and follicle growth for ARTs improvement in mammals.

INITIAL AND CYCLIC RECRUITMENT OF 
OVARIAN FOLLICLES

The survival, activation, and growth of ovarian 
follicles from the smallest primordial follicles to the 
largest preovulatory follicles are dependent on multiple 

extrafollicular and intrafollicular factors. They are stage-
specific growth and hormonal factors. Tang et al. (2012) 
found that growth and differentiation factor-9 (GDF-9) and 
basic fibroblast growth factor (bFGF) also known as FGF 
or FGF-β enhance FSH effects on the survival, activation, 
and growth of cattle primordial follicles in vitro. The 
duration of follicles’ formation from primordial follicle 
stage to ovulation is 6 months or longer in cattle and 
human (Campbell et al., 2003; van den Hurk and Santos, 
2009; Baerwald and Pierson, 2020) and developmental 
competence of oocytes are acquired during oogenesis 
(Albertini, 2015).

The term initial recruitment or cyclic recruitment has 
been used to describe two processes of follicle development 
(McGee and Hsueh, 2000). The term initial recruitment 
describes recruitment of dormant primordial follicles 
continuously into the growing follicle pool whereas 
cyclic recruitment describes recruitment of antral follicles 
each reproductive cycle. The initial recruitment begins 
after formation and continues throughout life. The follicles’ 
pathway remains dormant and their oocytes starting 
to grow and are not capable of undergoing germinal 
vesicle breakdown (GVBD). The cyclic recruitment 
begins after puberty onset and the follicles pathway are 
follicular atresia through cell apoptosis (Mazoochi and 
Ehteram, 2018). Follicular atresia is dependent on the 
follicular developmental stage where majority found in 
the transitional stage between the preantral and early antral 
follicles. Different autocrine and paracrine factors control 
the cell death of ovarian follicles.

Multiple waves of antral ovarian follicular 
development during bovine estrous cycle (2, 3 and 4 
waves) and human menstrual cycle (2 and 3 waves) were 
reported in several studies (Gordon, 2003; Cavalieri et 
al., 2018; Baerwald and Pierson, 2020) (Figs. 2 and 3). 
There is a pool of early antral follicles at the onset of 
follicular phase from which the ovulatory follicle(s) is 
continuously selected thereafter. An early antral follicle 
has been estimated to takes about 40 days to develop to 
the preovulatory follicle in cattle. In recent years, interest 
has grown in the use of aspirated oocytes from ovarian 
follicles during prepubertal and post pubertal periods for 
in vitro maturation, fertilization and embryo production 
(Mohammed, 2014a, b). Furthermore, oocytes were 
picked-up (OPU) during first stage of pregnancy in cattle 
for embryo production (Ferré et al., 2020). 

Follicle stimulating hormone (FSH) is preceded 
emergence of follicular wave (Webb et al., 2003; Baby and 
Bartlewski, 2011). Around the time of follicular selection, 
granulosa cells acquire luteinizing hormone (LH) receptors 
that are essential for further development (Campbell et al., 
1995; Webb et al., 2003; Baird and Mitchell, 2013). LH 
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hormone receptors increase as follicle grow in both theca 
and granulosa cells. Preovulatory follicles are characterized 
with high aromatase expression in the granulosa cells in 
addition to high concentration of estradiol hormone in 
follicular fluid (Campbell et al., 1995; Shores and Hunter, 
1999; Webb et al., 2003). Diameter of gonadotrophin 
dependent follicle 3-4 mm whereas diameter of follicles 
which their granulosa cells acquire LH receptors is 9-10 
mm (Campbell et al., 1995; Gordon, 2003; Webb et al., 
2003). Ovulation occurs in cattle within 24 h. after LH 
surge. Ovarian follicular sizes and their follicular fluid 
composition are affected by follicles development and/
or nutritional level during estrous cycle (Mohammed and 
Kassab, 2014; Mohammed et al., 2011b, 2012; Senosy 
et al., 2017, 2018). This in turn affects oocytes’ quality 
and developmental competence of the subsequent embryo 
development (Mohammed et al., 2020).

Fig. 2. Ovarian cyclic waves during estrous cycle in cattle.

Fig. 3. Ovarian cyclic waves during menstrual cycle in 
human.

OOGENESIS
 
There is a continual initial recruitment of small 

numbers of primordial follicles in the ovary to 

start folliculogenesis, which it takes 6 months or longer. 
This initial recruitment continues until exhaustion of 
primordial follicles around the age of fifty years. During 
ovarian folliculogenesis, primordial follicles and their 
containing oocytes start growth followed later by follicle 
selection and final maturation. Oogenesis of oocyte occurs 
simultaneously during folliculogenesis through two phases; 
the growth phase followed by a maturation phase. The 
oocyte growth is a lengthy and multi-step process where 
it enlarges from 35 µm to 120 µm in diameter of human 
or bovine oocytes, produces large amounts of stable RNA, 
acquires the nuclear and cytoplasmic maturity to undergo 
fertilization and support early embryonic development. 

Oocyte growth and differentiation requires a complex 
bidirectional communication between germ cell and the 
companion granulosa cells. Oocytes and follicle growth 
are coordinated by paracrine factors secreted from both 
the germ cell and the somatic cell compartments in the 
juvenelle ovary (Eppig et al., 1997). Meiotic competence 
is acquired progressively during oocyte growth (Eppig et 
al., 1994) and necessitates an accumulation of cell cycle 
regulatory molecules, p34cdc2 and/or cyclin B (Chesnel 
and Eppig, 1995). In addition, meiotic resumption is also 
associated with an increase in the nuclear concentration of 
both cyclin B and p34cdc2 and with further translational and 
posttranslational modifications of mitotic kinases (Mitra 
and Schultz, 1996; de Vantery et al., 1997).

The accumulation of cell cycle-related kinases in 
oocytes at diplotene stage results in the acquisition of several 
characteristics typical of somatic cells at G2/M stage, i.e., 
growing oocytes undergo dynamic changes in microtubule 
and chromatin configuration (Parfenov et al., 1989; Mattson 
and Albertini, 1990; Wickramasinghe et al., 1991). The 
distribution of microtubules observed in growing oocytes 
changes when multiple microtubule organizing centers 
appear in the cytoplasm of fully grown mouse oocytes 
upon meiotic competence acquisition (Escrich et al., 2010; 
Reader et al., 2017). Furthermore, during oocyte growth, 
the nuclear morphology undergoes dynamic modifications 
and changes from a decondensed chromatin configuration 
(nonsurrounded nucleolus, NSN) typically found in the 
nucleoplasm of growing oocytes toward a progressive 
condensation and redistribution of chromatin around the 
nucleolus (surrounded nucleolus, SN. Both decondensed 
(NSN) and condensed (SN) chromatin configurations are 
found in the fully grown GV oocytes obtained from the 
large antral follicles (Escrich et al., 2010). Heterogeneity 
in morphology of GV nuclei results in profound changes in 
the oocyte’s metabolic properties. Therefore, synthesis and 
storage of transcripts during oocyte growth are essential 
components in the establishment of the maternal program 
for maternal zygotic transition. The proportion of oocytes 
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with the SN configuration has been found to increase with 
gonadotropins treatment of mature females (Zuccotti et 
al., 1995; Bouniol-Baly et al., 1999).

Oocyte communication with compartment of 
granulosa cells is probably essential for both oocyte 
growth and acquisition of meiotic competence (Eppig et 
al., 1997). However, both cyclin B and p34cdc2 accumulate 
in cumulus-enclosed and denuded GV oocytes (Chesnel 
and Eppig, 1995). This suggests that meiotic competence is 
developmentally regulated by an oocyte-intrinsic program 
(Chesnel et al., 1994), and granulosa cells are important 
regulators of final oocyte differentiation events (Chesnel 
et al., 1994; Chesnel and Eppig, 1995).

The maturation phase of oocyte requires relatively 
less time where it is 24 h. in human and ruminants in vitro 
(Fig. 4) Oocyte maturation is the most important stage for 
further embryo development (Mohammed et al., 2005; 
Yousefian et al., 2021). Follicular wave, follicle size, type 
of organism and nutrition, follicular and luteal stages are 
some of the factors affecting the quality of oocytes and 
maturation rate in vivo and in vitro (Mohammed et al., 
2005, 2012a, 2020, 2021). The maturation media and their 
supplementations (hormones, FF, BSA, glutamine, amino 
acids etc.) and culture conditions (oxygen, CO2, humidity, 
light) in vitro were indicated to affect maturation, 
fertilization and embryo development (Mohammed et al., 
2005; Yousefian et al., 2021; Kang et al., 2021). 

Fig. 4. Chronology of events during the maturation of 
bovine oocytes.

CUMULUS CELLS

Cumulus cells are a cluster of cells that surround and 
communicate the oocyte through intermediate and gap 

junctions. It has been thought that gap junctions between 
oocytes and cumulus cells is absolutely necessary for 
oocytes’ growth and maturation and further embryonic 
development. Communication of cumulus cells with the 
germinal vesicle oocytes (cumulus oocytes complexes, 
COCs) or addition of cumulus cells to maturation media 
(Mohammed, 2006, 2008; Mohammed et al., 2005, 2008, 
2010, 2019b, 2020; Lee et al., 2018) during oocytes 
maturation in vitro effects on maturation rates and 
development of the resulting embryos thereafter. Cumulus 
cells is essential for transfer of some nutrients as amino 
acids to the oocytes. Amino acids (AAs) are uptake first 
by cumulus cells and transfer thereafter to the oocyte via 
gap junctions. There are several roles of AAs in cytoplasts 
of oocytes and the resulting embryos as energy sources 
and protein synthesis (Rieger, 1992), osmolytes (Dawson 
et al., 1998), intracellular buffers (Edwards et al., 1998), 
antioxidant compounds (Guérin et al., 2001) and heavy 
metal chelators (Bavister, 1995). 

Follicular fluid (FF) is a semi-viscous and yellow 
liquid filled the follicular antrum and surround the 
oocyte. Its components are mainly synthesized from 
secretions of granulosa cells and from blood plasma 
transudate. Follicular fluid composition changes during 
estrous or menstrual cycle upon follicular development 
(Mohammed et al., 2019b). The fluid is rich in hyaluronic 
acid or hyaluronan (HA), a polysaccharide molecule. 
Follicular fluid contents of amino acids were associated 
with morphological quality of cumulus-oocyte complexes 
(COC) and with post-fertilization embryo development 
to the blastocyst stage (Sinclair et al., 2008). It has been 
found that addition of specific amino acids in culture media 
facilitates embryo hatching in some species (Liu and Foote, 
1995; Pinyopummintr et al., 1996), helping to alleviate 
cultured-induced arrest. Therefore, cumulus cells or their 
secretions (FF) can improve cytoplasmic maturation of 
oocytes (Ikeda and Yamada, 2014; Mohammed et al., 
2019b). 

INVOLVEMENT OF ASSISTED 
REPRODUCTIVE TECHNIQUES FOR 

SUCCESSFUL REPRODUCTION
 
Assisted reproductive techniques (ART) includes 

reproductive procedures used primarily to address 
infertility as artificial insemination, embryo transfer, in 
vitro fertilization, gamete/embryo micromanipulation, 
semen sexing, genome resource banking, and somatic cell 
nuclear transfer for mammalian species (Mohammed et 
al., 2005, 2006, 2008, 2010, 2011a, b, 2012a, b, 2019a, b). 
Such techniques could be applied of fetal, prepubertal and 
post pubertal male and female gonads (Fig. 5).
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Fig. 5. Application of assisted reproductive techniques 
during fetal, prepubertal and post pubertal periods.

OVARIAN TISSUE CRYOPRESERVATION 
AND TRANSPLANTATION

Recent interest of cryopreserved ovarian 
transplantation has grown in the last decade as an option 
for infertility treatment or cryopreservation of genetic 
materials in human and animals as well (Fig. 6). Laboratory 
animals have been used for investigating ovarian 
transplantation in several studies because of the limited 
availability of humans and primates’ ovarian tissues for 
such experiments (Eyck et al., 2010; Dath et al., 2010; 
Youm et al., 2015). Our studies indicated that ovarian 
transplants restore functions in mice and rats (Mohammed 
et al., 2012; Mohammed, 2018a). Restoration of ovarian 
function might be affected by site of transplantation and 
age. Youm et al. (2015) compared different ovarian tissue 
transplantation sites as subcutaneous, capsule back muscle, 
kidney and fat pad in mice. The obtained results indicated 
highest numbers of collected oocytes and their maturation 
were from ovaries transplanted in kidney capsule site 
and the lowest were from subcutaneous site. The number 
of patients with cancer has been increased in the recent 
years. Cancer treatments such as doses of radiotherapy 
and/or chemotherapy cause ovarian follicular structure 
degeneration resulting in infertility (Meirow et al., 2007). 
Therefore, this trend of cryopreserved ovarian tissue 
transplantation has become an applied tool for restoring 
follicular development in cancer patients (Dolmans et al., 
2021). 

FOLLICLE AND OOCYTE CULTURES
 
Follicles and oocytes were cultured for growth and 

maturation (Mohammed et al., 2005; Xiang et al., 2021). 
There is a continual decrease of ovarian primordial follicles 
with increasing age of females. Artificial ovary is a natural 

ovarian substitute used to imitate the ovarian functions. It is a 
polymer biomaterial in which growth factors, stromal cells 
and ovarian follicles are encapsulated with biomaterials 
to simulate the ovarian functions: Oocyte and steroid 
hormone release (Cho et al., 2019). Moreover, bovine 
oocytes derived from early antral follicles were cultured 
for in vitro growth in a gas-permeable culture device for 
8 days (Chelenga et al., 2022). The study indicated that 
low oxygen and astaxanthin supplementation promotes 
blastocyst yield of oocytes after 8-day in vitro growth. 

Fig. 6. Ovarian morphology and histology upon ovarian 
transplantation in rats. A, morphology of active transplanted 
ovary; B, antral follicles of active transplanted ovary; C, 
corpora lutea of active transplanted ovary.

Fully grown germinal vesicle (GV) oocytes of humans 
and ruminants were cultured for in vitro maturation 24 h. 
Oocyte maturation is the most important process for embryo 
development. The oocytes re-enter first meiotic division 
and nuclear and cytoplasmic changes occur for successful 
fertilization and early embryo development (Mohammed 
et al., 2005). There are different factors effect on oocyte 
maturation and embryo development including species, 
age, follicle size in addition to the maturation conditions 
(Mohammed et al., 2020). Our study and others indicated 
that oocyte quality, follicular fluid supplementation, 
cumulus cells affected oocyte maturation rate and timing 
of embryo cleavages in addition to blastocyst rate and 
hatching (Mohammed et al., 2005). Furthermore, nutrition 
and feed additive has been indicated to influence on 
follicular and embryonic development (Mohammed, 
2018b; Mohammed and Attaai, 2011; Mohammed et al., 
2012, 2019, 2020). 

 
ARTIFICIAL OOCYTES “GAMETES”

In recent years, interest has grown in the use of 
enucleated GV, MI and MII oocytes as recipients cells of 
GV, embryonic and somatic nuclei (Fig. 7) (Mohammed 
et al., 2019). In addition, nucleolus transfer has been 
applied to enucleolated oocytes (Benc et al., 2019). The 
reconstructed oocytes seem to be an interesting model for 
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studying the mechanisms of meiotic maturation, treatment 
of reproductive disorders or for embryonic and somatic 
cloning. Therefore, the recipient cytoplasts (GV, MI and 
MII) and donor nuclei (GV, embryonic and somatic) at 
different cell cycle stages (G0/G1, G2/M and S stages) 
affect the maturation or fertilization efficiency in addition 
to the developmental competence of the resulting embryos. 

Fig. 7. Maturation and manipulation of mouse oocytes and 
the resulting outcomes: cumulus-enclosed germinal vesicle 
(GV) oocytes (A), denuded GV oocytes (B), matured 
oocytes (C), complete enucleation of germinal vesicle 
oocyte (D), complete enucleation of cumulus-enclosed 
germinal vesicle oocyte (E), selective enucleation of g 
germinal vesicle oocyte (F), enucleation of pro-metaphase 
I oocyte (G), enucleation of metaphase I oocyte (H), 
enucleation of metaphase II oocyte (I) enucleolation of 
germinal vesicle oocyte (J), fetal fibroblast (K), germinal 
vesicle karyoplasts (L) GV karyoplasts placed under the 
zona pellucida of enucleated GV oocytes (M) fused with 
cytoplasts (N, O) developed zygote upon embryonic 
nuclear transfer (P), developed hatching blastocyst upon 
embryonic nuclear transfer (Q) offspring upon fallopian 

embryo transfer.
Transfer of germinal vesicle nucleus to the GV 

ooplast derived from matured young mice could not rescue 
ageing-associated chromosome misalignment in meiosis 
of oocytes from the aged mice (Cui et al., 2005). Chang et 
al. (2005) reported that the developmental incompetency 
of denuded mouse oocytes undergoing maturation in vitro 
is ooplasmic in nature and is associated with aberrant Oct-
4 expression. In addition to developmental incompetency 
of denuded cytoplasm, it has been suggested that nucleolus 
dysfunction in oocytes and embryos may be associated 
with infertility in humans (Fulka et al., 2004). Thus, for 
better understanding the background of difficulties in 
co-operation between foreign nucleus and cytoplasm 
in GV reconstutructed oocytes, the development of new 
micromanipulation techniques and/or new culture systems 
of oocytes are required which might also help to overcome 
the existing problems and to increase the developmental 
competence of resulting embryos (Mohammed et al., 
2008, 2010, 2019). Meiotic maturation of enucleated 
oocytes reconstructed with embryonic/somatic nuclei 
might enable creating the new type of oocytes carrying 
the complete introduced nuclear genome. Such “artificial” 
gametes could subsequently be fertilized by spermatozoa 
or artificially activated. In cases of male infertility with 
complete absence of the germline, the male somatic 
cell nuclei could be introduced into intact oocytes 
without previous enucleation. Male somatic cell nuclei 
haploidization would occur in the presence of the original 
female nucleus (triploid to diploid reduction), hopefully 
leading to the formation of a diploid embryo. So far, only a 
few trials concerning the meiotic maturation of enucleated 
GV oocytes reconstructed with embryonic/somatic nuclei 
were undertaken whereas in vitro fertilization of such 
matured oocytes has been studied in our study (Mohammed 
et al., 2008, 2010, 2019).

CONCLUSION

Regulating ovarian follicles activation, growth 
and development during fetal, before and after puberty 
in mammals is considered the determinant of the 
reproductive lifespan of mammals. Involvement of assisted 
reproductive techniques is used nowadays for treatment of 
infertility, enhancement of meat and milk production and 
saving endangered species through in vitro manipulations 
of follicles, oocytes and sperm. Although the use of 
assisted reproductive techniques is still relatively rare and 
expensive specially in the third world countries, their use 
were doubled over the past decade. Percentage of infants 
born in the United States every year are 2.1% using assisted 
reproductive techniques. 
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