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Based on the physiologically non-self-renewing property of articular cartilage, the treatment of articular 
cartilage lesions remains an important challenge. Articular cartilage, the target of osteoarthritis (OA), 
contains renewable cartilage stem/progenitor cells (CSPCs) to maintain the tissue homeostasis. Compared 
with other adult stem cells, the self-renewal capacity and preference for chondrogenesis of resident CSPCs 
have propelled their exciting therapeutic prospects for cartilage repair. Tibetan mastiff, the ancestor 
of large breed dogs worldwide, represents a valuable model for human diseases. To our knowledge, 
this is the first study to capture the emergence of Tibetan mastiff-derived CSPCs. Our study aimed to 
unveil the biological properties and differentiation multipotency of CSPCs. CSPCs were characterized 
by the clonogenicity, growth curves and karyotype analysis, respectively. The results showed that the 
CSPCs of Tibetan mastiff displayed self-renewal ability, proliferative potential, and hereditary stability. 
Moreover, the CSPCs of Tibetan mastiff also positively expressed recognized surface antigens of human 
CSPCs. Additionally, CSPCs exhibited differentiation multipotency, including osteogenic, adipogenic 
and chondrogenic potential in vitro. These findings may propell CSPCs application in a clinical study, 
suggesting potential therapeutic treatment for OA or related joint diseases.

INTRODUCTION

By 2040, an estimated approximately 78.4 million adult 
population will have arthritis, characterized by joint 

pain and activity limitation, which will negatively affect 
their work productivity and life quality (Hootman et al., 
2016). In addition, the high medical costs of health care 
estimated up to $81 billion a year in the United States 
(Yelin et al., 2007). Osteoarthritis (OA), a prevailing form 
of arthritis, can lead to severe mobility loss (Jiang et al., 
2015; Felson, 2004). Cartilaginous tissues are comprised 
of hyaline cartilage, elastic cartilage and fibrocartilage 
and they can be distinguished on the basis of molecules 
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and matrix (Jiang and Tuan, 2015). Articular cartilage, a 
kind of hyaline cartilage, resides in the end of diarthrodial 
joints. Hypocellular articular cartilage is a vasculature-free 
structure without nerves, once destroyed, can give rise to 
the development of osteoarthritis (Jiang and Tuan, 2015).

When articular cartilage becomes damaged, 
chondrocytes and stem cells can be used to repair 
cartilage degeneration. However, chondrocyte-based 
therapies are thought to be a major challenge due to the 
uncertainty of expanded chondrocytes phenotype and 
their dedifferentiation properties, which have a negative 
effect on the generation of functional cells and hyaline 
cartilage (von der Mark et al., 1977; Pappa et al., 2014). At 
present, three groups of stem cells play significant roles in 
cartilage tissue engineering, including mesenchymal stem 
cells (MSCs), induced pluripotent stem cells (iPSCs), and 
embryonic stem cells (ESCs). Whereas, the problems of 
tumorigenesis and ethical issues limit the applications of 
pluripotent iPSCs and ESCs (Nam et al., 2018). Among 
multiple sources of adult MSCs, bone marrow MSCs 
(BM-MSCs), which can spontaneously ossify, commonly 
generate calcified cartilage bone instead of hyaline 
cartilage after treatment with chondrogenic differentiation 
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medium (Huang et al., 2017). Therefore, a more in-depth 
exploring of novel therapeutic approaches for cartilage 
repair was warranted.

Articular cartilage, the target of OA, contains core 
cartilage stem/progenitor cells (CSPCs) that maintain the 
tissue homeostasis (Jiang and Tuan, 2015). Moreover, 
the resident CSPCs exhibit great potential applications in 
cartilage regenerative medicine owing to their preference 
for chondrogenesis (Seol et al., 2012; Pizzute et al., 2015; 
Jessop et al., 2020). Homing to the injury zones, CSPCs can 
respond to cartilage lesions and effectively promote joint 
cartilage repair attributed to self-renewal and multipotency 
(Seol et al., 2012). Further study on the origin, function 
and regenerative mechanism of endogenous CSPCs 
will provide a potential therapeutic cell resource for the 
treatment of OA related degenerative joint diseases.

The Tibetan mastiff, ancestor of large breed dogs 
worldwide, has been used as a valuable animal model 
for human diseases to decipher the potential disease 
mechanisms and evaluate treatment strategies (Wang 
et al., 2012; Li et al., 2008; Kijas et al., 2003). To date, 
there are numerous published reports on CSPCs, such as 
cartilage tissues of human, equine, sheep, chicken, rabbit 
and bovine, with the exception of Tibetan mastiff (Oda et 
al., 2016). 

To our knowledge, this is the first study on the 
successful isolation and culture of Tibetan mastiff derived 
CSPCs in vitro. The present study aimed to evaluate the 
biological characteristics of Tibetan mastiff CSPCs by 
virtue of expression of biomarkers, growth kinetics, 
clonogenicity. Furthermore, multilineage potency of 
CSPCs was additionally probed on the basis of adipogenic, 
osteogenic, and chondrogenic differentiation test in vitro, 
which laid an important theoretical basis and provided cell 
resource for cell therapy of some canine diseases.

 
MATERIALS AND METHODS

Isolation and cultivation of Tibetan mastiff CSPCs 
The joint samples of newborn Tibetan mastiff (6 

individuals, male, weight 475g) were randomly dissected 
from nonlesion articular cartilages. The use of animals and 
all experimental procedures were approved by Institutional 
Animal Care and Use Committee (IACUC) for Ethics of 
Bengbu Medical College. Then, CSPCs were collected by 
fibronectin adhesion assay as previously described (Li et 
al., 2015a). Briefly, the cell pellets digested by 0.2% (wt/
vol) collagenase II to single cell were inoculated in new 10 
mg/ml fibrin-coated culture dishes at 6×103 cells/cm2, and 
further cultured in sequential warm fresh chondro-medium 
(CM, DMEM/F12 supplemented with 10% foetal bovine 
serum and 2 mM L-glutamine) up to P24.

Population doublings (PD) of Tibetan mastiff CSPCs in 
vitro 

Under standard culture conditions, the growth of 
1×104 CSPCs from different passages CSPCs (P4/P12/
P20) was detected in real time, and the cell density were 
measured every day. Likewise, PD time was monitored by 
direct cell counts using hemocytometer assay according to 
a previously reported protocol (Zhang et al., 2018). PD = 
(t - t0) lg2/ (lgNt – lgN0), t: termination time; t0: starting 
time; Nt: ultimate cell number; N0: initial cell number.

 
Colony-forming activity of Tibetan mastiff CSPCs 

The self renewal capacity of CSPCs cultures was 
characterized on the basis of the clonogenicity test 
using the Giemsa compound staining method (Jessop et 
al., 2020). Following enzymatic digestion, fibronectin-
adherent CSPCs was inoculated at the initial number of 
200 cells and cultured in CM. After 8-12 days, colony-
forming efficiency (CFE) was verified as a percentage of 
colony-forming unit (CFU) numbers from 200 cells/cm2.

 
Cell cycle analysis and karyotyping of Tibetan mastiff 
CSPCs 

The cell cycle distributions of the CSPCs stained 
with Propidium Iodide (PI) were carried out by flow 
cytometry (Cytomics FC 500, Beckman Coulter, USA). 
Chromosomes spreads of Tibetan mastiff CSPCs were 
prepared, fixed and stained following standard methods 
(Zhang et al., 2018). After Giemsa staining, 200 well-
spread metaphases were randomly selected and observed 
under an oil immersion objective.

 
Immunohistochemistry of Tibetan mastiff CSPCs 

CSPCs grown on coverslips were fixed with 4% 
paraformaldehyde, followed by permeabilization with 
0.25% Triton X-100 (v/v) for 10 min and blocking with 
1% bovine serum albumin (BSA, w/v) and 10% goat 
serum for 30 min at RT. Cells were then incubated with 
the following primary antibodies at 4°C overnight: CD90, 
CD105, CD166, Vimentin, and FGFR3 (1:200: BIOSS). 
Following which, cells were incubated with FITC-labeled 
secondary antibody (1:500; BIOSS) for 1 h at RT. The cell 
nucleus was counterstained with 10 µg/ml DAPI for 10 
min. The results of the immunofluorescence staining were 
observed under a confocal laser-scanning microscope 
(Nikon corporation, Tokyo, Japan).

 
Cell surface markers detection by FACS and RT-PCR 

The CSPCs in the logarithmic phase were fixed with 
70% precooling ethyl alcohol prior to treatment with 
primary antibodies. The expression of cell surface markers 
of CSPCs were detected following by colabelling with 
primary antibodies of CD90, CD105, CD166, Vimentin 
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and FGFR3 using flow cytometry, respectively. For cell 
markers expression levels, the data from CSPCs stained 
positively was acquired and processed. Moreover, the 
expression of cell surface markers (CD90, CD105, CD166, 
Vimentin) of CSPCs in mRNA level were detected by 
reverse transcription PCR (RT-PCR), and the primers and 
amplimer size are presented in Table I.

 
Multilineage potential of Tibetan mastiff CSPCs 

The CSPCs were induced to differentiate into 
adipocytes, osteoblasts, and chondrocytes under 
lineage-specific inducing conditions. For adipogenic 
differentiation, the cells in monolayer culture were 

incubated in adipocytes-inducing differentiation (AID) 
medium, DMEM/F12 supplemented with 1.0 mmol/l 
dexamethasone, 0.5 mmol/l isobutyl-methylxan-thine and 
10 mg/l insulin for 12 days. Adipogenesis was evaluated 
by intracellular lipid accumulation by Oil Red O staining 
(Solarbio) and adipocytes specific genes detection by RT-
PCR. For osteogenic differentiation, CSPCs were cultured 
in 6-well plates with a concentration of 2×105 cells/well and 
induced in standard osteogenic induction medium (OID) 
for 14 days to make calcifying nodules formation (Ma et al., 
2017).  At day 14, the osteogenic differentiation potential 
of CSPCs were detected by alizarin red stain kit (Solarbio)  
and the expression levels of osteogenic specific genes

Table I. Primer sequences used in RT-PCR assay.

Gene name Primer sequences Product length (bp) Tm (°C)
GADPH F:5’-GGTGATGCTGGTGCTGAGT-3’ 299 56

R:5’-GTCTTCTGGGTGGCAGTGAT-3’
COL2A1 F:5’-CTGTCCCATCTGCTCAACTG-3’ 321 57

R:5’-CCAGCCTTCTCATCAAATCC-3’
Vimentin F:5’-CAGATGCGTGAAATGGAAGA-3’ 274 58

R:5’-TGTCAACCAGAGGGAGTGAA-3’
SOX9 F:5’-CTCAAGGGCTACGACTGGAC-3’ 313 58

R:5’-CGTTCTTCACCGACTTCCTC-3’
ACAN F:5’-CTGAAGGGCAGGTGAGGAT-3’ 293 60

R:5’-CTGTTCGGGTGTAGCAATGA-3’
ITGB1 F:5’-TTTCTGGATTGGACTGATTGG-3’ 284 60

R:5’-TCTGCTGTTCCTTTGCTACG-3’
ALCAM F:5’-CAGTTATCCAGACGGCAACA-3’ 300 57

R:5’-TTGATGGCAGTTTTTGATGG-3’
COL1A2 F:5’-CTCGCTCACCACCTTCTCTC-3’ 283 58

R:5’-CAGTTCTTGGCTGGGATGTT-3’
FGFR3 F:5’-CACAAGGTCTCCCGCTTTC-3’ 312 56

R:5’-CGTGGCATCATCTTTTAGCA-3’
PPAR-γ F:5’-TGCTGTGGGGATGTCTCATA-3’ 318 59

R:5’-ACCTCTTTGCTCTGCTCCTG-3’
LPL F:5’-TTTGGGATACAGCCTTGGAG-3’ 303 58

R:5’-CCTCTCTCTGCAATCACACG-3’
SPP1 F:5’-GATGATGGAGACGATGTGGA-3’ 318 60

R:5’-GGAAAGTAGGACGGCATTGA-3’
CD90 F:5’-TGGAGGGTTGGAGAAGGAGT-3’ 265 58

R:5’-GCACTGATGGGGGAGGTAAG-3’
CD105 F:5’-GAGCCCAGTGACTCTTTCCC-3’ 377 56

R:5’-AAACGTCACCTCACCCCTTG-3’
CD166 F:5’-GACCAAGCAGATTGGCGATG-3’ 495 59

R:5’-TCTCTGTTTTCATTAGCAGAGACAT-3’
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COL1A2 and SPP1 by RT-PCR. The chondrogenic 
capacity of CSPCs was explored following the previous 
study (Ma et al., 2017). Briefly, cells were processed in 2D 
cultures and in 3D pellet cultures in specific chondrogenic 
differentiated medium (CID). For 2D cultures, induced 
cells were harvested after 21 days for RT-PCR analysis 
and alcian blue staining (Sigma). For 3D cultures, the 
pelleted cells (2.5 × 105) were placed into a 1.5 ml tube 
and treated with chondrogenic induction medium for 21 
days, and intense stains of induced CSPCs were analyzed 
to investigate the glycosaminoglycan secretion in vitro.

 
Statistical analysis 

All results were reported as the mean ± standard 
deviation from at least three independent experiments. 
Statistical significance (P < 0.05) was determined by 
Student’s t-test. The software of GraphPad Prism 7.0 was 
used for statistical analysis and the generation of graphs.

 
RESULTS

 
Morphological characteristics 

The original isolated Tibetan mastiff CSPCs were 
plated in fibronectin-coated plates for 6-7 days under CM 
culture conditions, reaching confluence. Cytomorphology 
of CSPCs gradually adopted polygonal and spindle 
shapes in the growth phase for all passages (Fig. 1). 
Moreover, CSPCs could maintain stable morphology and 
undifferentiated states after subsequent subculture in vitro 
to at least 24th passages (Fig. 1). Afterwards, blebbing and 
karyopyknosis appeared sequentially potentially indicating 
senescence of CSPCs (Fig. 1).

 

 
Fig. 1. Cell morphology of CSPCs at passage 1 to passage 
24 cultured in vitro. After passage 20, CSPCs appeared 
senescent. 

 
Colony formation, growth kinetics, and karyotyping 
analysis 

The colony-forming units of CSPCs were detected 

using Gimesa staining, and colony-forming efficiencies 
were determined as 37.3 ± 1.5%, 29.1 ± 0.8% and 25.6 
± 1.2% colonies/ 200 cells for P4, P12, P20 (Fig. 2a), 
indicated the clonogenic and self-renewal characteristics. 
Cell growth curve is a traditional assay to characterize 
proliferating adherent cells at different time points. 
Growth curves of CSPCs from P4, P12 and P20 were 
typical S-shaped, indicating that proliferative potential 
were similar (Fig. 2b). Based on the cell growth curves, the 
PD time of different passages was P4/34.09 h, p12/35.10 
h, and P20/36.13 h, respectively. Karyotyping (Fig. 2c) 
confirmed the diploid chromosome frequencies of CSPCs 
of Tibetan mastiff from P4, P12, P20 with 2n = 78 were 
93.6%, 92.8%, and 92.6%, which confirmed CSPCs 
was reproducibly diploid with no cross contamination. 
Likewise, no abnormalities were detected potentially 
indicating the stable character of CSPCs.

Fig. 2. Karyotype and cell cycle analysis of proliferating 
CSPCs. (a) Colonies and morphology of CSPCs by Gimesa 
staining at P4, P12 and P20 (bar, 50 μm). Bar chart shows 
that colony forming efficiency of different passages; (b) 
Sigmoidal growth curves of CSPCs at different passages 
(P4/P12/P20); (c) Karyotype analysis of CSPCs (2n = 78); 
(d) Cell cycle analysis of P4, P12 and P20.

Cell cycle analysis and cell-markers immunofluorescence 
characterizations in CSPCs 

Cell cycle analysis showed that the rate of G0/G1 
was about 51.3-72% (Fig. 2d), and only a small proportion 
was proliferating cells (in S/M phases). Moreover, there 
were no significant difference among the P4, P12 and P20. 
The results of immunofluorescence showed that CSPCs 
were positive for CD90, CD105, CD166, and Vimentin 
(Fig. 3a). And, RT-PCR demonstrated that the CSPCs 
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could express CD90, CD105, CD166, and Vimentin as 
well at mRNA level, which was consistent with the results 
of immunofluorescence (Fig. 3b). In addition, FGFR3 
was also validated in CSPCs by immunofluorescence 
analysis (Fig. 3a). Furthermore, FACS analysis further 
demonstrated that CSPCs of Tibetan mastiff highly 
expressed a subset of recognized markers (CD90/105/166, 
Vimentin and FGFR3) with over 95% viability (Fig. 3c), 
indicating similar fundamental characteristics of gene 
expression of human CSPCs.

Fig. 3. Characterization of biomarkers on CSPCs. (a) The 
expression of biomarkers CD90/105/166, Vimentin, and 
FGFR3 on CSPCs were analyzed by immunofluorescence 
(bar, 50 μm); (b) RT-PCR was used to detect mRNA 
expression levels of cell surface antigens of CSPCs; (c) 
CSPCs were colabeled with biomarkers and analyzed by 
flow cytometry, and the positive rates of surface antigens 
of CSPCs were all above 95%.

Adipogenic differentiation 
In the process of adipogenesis, the adipogenic 

potential of CSPCs was confirmed by Oil Red O staining 
and RT-PCR analysis. The morphology of CSPCs was 
gradually transformed from spindle shape into considerably 
flat shape, and followed by accumulation of lipid droplets 
under adipocyte-inducing conditions for 12 days (Fig. 4a). 
And, the lipid droplets were stained by Oil Red O staining 
(Fig. 4a). Likewise, adipogenesis was further confirmed 
by the expression of adipogenic marker genes of PPAR-γ 
and LPL by RT-PCR (Fig. 4b).

 
Osteogenic differentiation 

After incubation in osteoblast-inducing (OID) 
conditions for 14 days, the CSPCs showed osteogenic 
differentiation with calcium deposit nodules and increased 
expression of osteogenic marker genes. In the process 
of osteogenesis, fusiform or polygonal cell shape was 

transformed into oval. Mineralization was visualized by 
Alizarin Red S staining (Fig. 4c). RT-PCR analysis showed 
that the increased expression of osteoblast differentiation 
marker genes, such as COL1A2 and SPP1 (Fig. 4d).

 

Fig. 4. Differentiation multipotency characteristics of 
cartilage-derived CSPCs. (a) Intracellular lipid droplets 
of adipocytes accumulated in cytoplasm (bar, 50 μm) 
and were positive for Oil Red-O staining (bar, 20 μm); 
(b) Adipogenic gene expression of PPAR-γ and LPL was 
analyzed by RT-PCR. (c) Calcium deposits (bar, 50 μm) 
within induced osteoblasts were positive for Alizarin Red 
S staining (bar, 20 μm); (d) Osteogenic gene expression of 
COL1A2 and SPP1 was analyzed by RT-PCR.

Chondrogenic differentiation 
After induction of chondrogenic differentiation for 21 

days, the induced CSPCs formed numberous primmorphs 
or colonies, which were positive to Alcian Blue (Fig. 
5a). The induced CSPCs in 3D monolayer cultures were 
smooth and iridescent, and stained positively for Alcian 
Blue and Toluidine Blue (Fig. 5c), suggesting the presence 
of glycosminoglycans. In addition, the expression of 
chondrocyte-specific genes were further detected by RT-
PCR, including Vimentin, ALCAM, SOX9, ITGB1, ACAN, 
FGFR3, and COL2A1 (Fig. 5b). All these data clarify the 
chondrogenic differentiation potential of CSPCs.

DISCUSSION

The poor self-repair nature of articular cartilage has 
partially posed a potential barrier to the development of 
tissue-engineered cartilage. On the other hand, compared 
with various tissues, cartilage tissues are theoretically 
thought to be easier to replicate attributable to their 
avascular and aneural characteristics (Jessop et al., 2020). 
Nevertheless, the acquisition of original cartilage remains 
a challenge in the field of cartilage regenerative medicine 
(Abbott and Kaplan, 2015). Of interest, for chondrogenic 
potential, cartilage derived CSPCs that produce the 
stable cartilage with physiological relevance would be 
inherently advantageous over implants from unrelated cell 
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sources, such as mesenchymal stem cells (MSCs) from 
bone marrow, skeletal muscle and adipose tissue (Seol et 
al., 2012; Pizzute et al., 2015; Bauge and Boumediene, 
2015). Previous study showed that a contributing signaling 
molecule NGF is tightly tied to the pathogenesis of OA, 
via involvement in OA joint pain and cartilage structural 
changes, with CSPCs as target cells (Jiang et al., 2015). 
Further work will establish a suitable animal model to 
elucidate dual effects of the NGF signaling events by an in 
vivo study, suggesting a potential therapeutic treatment for 
OA or related joint diseases. To our knowledge, the present 
study is the first to describe stable biological characteristics 
and multilineage potential of Tibetan mastiff CSPCs.

Fig. 5. Chondrogenesis derived from CSPCs by 2D and 
3D culture. (a) Chondrocytes induced from CSPCs formed 
primmorphs, and were positive for alcian blue staining 
(bar, 100 μm); (b) Chondrogenic gene expression of 
Vimentin, ALCAM, SOX9, ITGB1, ACAN, FGFR3, and 
COL2A1 were analyzed by RT-PCR, respectively. (c) 
Chondrogenic differentiation of CSPCs in 3D monolayer 
culture was stained positive with toluidine blue and 
alcian blue staining, which depicted the presence of 
glycosminoglycans (bar, 200 μm).

The acquisition of desired cell types with a sufficient 
amount in vitro has always been a crucial scientific problem 
of stem cell and regenerative medicine. Herein, CSPCs 
positively responded to adipogenic, osteogenic, and 
chondrogenic induction, indicating their differentiation 

multipotency. Adipogenic differentiation is initiated with 
preadipocyte phase, followed by further differentiation 
into mature adipocytes (Lee et al., 2011). The interplay 
of adipogenic factors such as dexamethasone, insulin 
and isobutyl methylxanthine may facilitate preadipocytes 
terminal differentiation (Zhang et al., 2018; Kim et al., 
2018). The transcription factor PPAR-γ, a member of 
type II nuclear hormone receptor family, is known to 
exert a positive effect on phenotypic stability of mature 
adipocytes (Hallenborg et al., 2014; Li et al., 2015b). 
Moreover, lipogenic gene PPAR-γ participates in the 
regulation of the storage and release of lipid during adipose 
differentiation through the interaction with FABP4. While 
family members PPAR-α and PPAR-β have little effect 
on adipogenesis (Brun et al., 1996; Lee et al., 2019). 
The present study demonstrated the positive expression 
of adipogenic differentiation marker PPAR-γ in Tibetan 
mastiff cartilage derived CSPCs.

Coordinated activity of osteogenic factors (L-ascorbic 
acid, dexamethasone, and β-glycerophosphate) may 
contribute to the alteration of spindle-shaped cells to 
cobble-stone-shaped osteoblasts (Zhang et al., 2018). 
IGF and BMP signaling, as positive regulating factor of 
osteogenic differentiation, implicate possible molecular 
regulatory mechanism for treating bone loss at aging 
process (Chen et al., 1998; Kang et al., 2009; Wabitsch 
et al., 1995; Yakar et al., 2005). Differentiation related 
gene SPP1 expressed in the late phase of osteogenesis and 
tightly connected to the mineralization of bone matrix (Jiao 
et al., 2020). Our study herein presented the formation of 
mineralized bone nodules and SPP1 expression.

Bioactive TGF-β3 could exert a positive effect on 
chondrocytes, and sequential coordination of heparin 
and chondrogenic factor TGF-β3 could maintain the 
differentiation stability of stem cells (Lei et al., 2014). 
SOX9, the important marker of mature chondrocyte, plays 
a significant role in contributing to cartilage formation 
(Kim et al., 2011; Park et al., 2013). Herein, we detected 
the positive expression of SOX9, which suggested that 
CSPCs were successfully induced to differentiate into 
chondrocytes by chondrogenic medium supplemented 
with TGF-β3.

 
CONCLUSION

In conclusion, we successfully isolated a novel type 
of cartilage stem/progenitor cells from Tibetan mastiff 
in vitro, and demonstrated its genetic characteristics and 
multilineage differentiation potential. The present study 
also illustrates the therapeutic potential of CSPCs and 
may serve as a fascinating candidate cell for regenerative 
therapies. However, more detailed studies are warranted 
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to decipher the precise molecular mechanisms of CSPCs 
differentiation and cartilage regeneration, as well as to 
probe into the difference of CSPCs between Tibetan 
mastiff and other species in future.
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