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Small mammals had their own adaptive strategies to changes of food resources. In order to investigate 
the adaptive changes of white adipose tissue (WAT) in Tupaia belangeri under food restriction (FR, 
fed 70% of ad libitum food intake) and refeeding (Re), body mass, food intake, resting metabolic rate 
(RMR), morphology, the positive expressions of uncoupling protein 1 (UCP1) and Cd137, and the 
relative expressions of PR domain containing 16 (PRDM16), bone morphogenetic proteins 7 (BMP7), 
peroxisome proliferator-activated receptor α (PPARα), cyclooxygenase 2 (COX-2) and peroxisome 
proliferator-activated receptor coactivator 1α (PGC-1α) of WAT were measured. The results showed that 
body mass, food intake and RMR were decreased in T. belangeri under FR condition, and the relative 
expressions of COX-2 and BMP7 in WAT were also declined. After refeeding, the above indexes were all 
recovered to the control level. But there were no significant differences between morphology and positive 
expressions of UCP1 and Cd137. All of the above results suggested that the physiological indexes in T. 
belangeri showed plasticity under the condition of FR and Re. Moreover, WAT played an important role 
in the survival environment of T. belangeri to adapt to the fluctuation of food resources.

INTRODUCTION

Phenotypic plasticity was the response ability of an 
organism’s phenotype to environmental changes, 

which described the quantitative relationship between 
environmental variables and phenotypes of a specific 
genotype (Lema, 2020). For example, the genetic 
variations of sexual behavior in male Permyscus leucopus 
were different under different photoperiods (Sharp et al., 
2015). However, insects cannot self-repair when their 
physiological balance were disturbed by environmental 
factors (Callier and Nijhout, 2014). Physiological 
adaptation was one of the main strategies for animals to 
cope with the fluctuation of natural environment, which 
can improve their survival abilities (Zhao and Wang, 2007). 
Food restriction (FR) or fasting occurred frequently in 
small mammals, which played important roles in survival 
of animals (Xu et al., 2011). Small rodents reduced body 
mass, body temperature or activity behavior to adapt to 
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the environment of food shortage (Ferguson et al., 2007), 
(Passadore et al., 2004; Ehrhardt et al., 2005), they can 
also regulate the expressions of related metabolic proteins 
(Fujii et al., 2017). Previously studies showed that FR 
reduced body mass, food intake, metabolic rate and serum 
leptin levels in Eothenomys miletus, Apodemus chevrieri, 
and Meriones unguiculatus; and these indexes recovered 
to the control level after refeeding (Re) (Wen and Niu, 
2010; Zhu et al., 2014).

Mammalian adipose tissues were mainly divided 
into white adipose tissue (WAT), brown adipose tissue 
(BAT) and beige adipose tissue (Wang et al., 2014). 
WAT stored in animals was controlled by the sympathetic 
nervous system, which can regulate fat production and 
decomposition (Bartness et al., 2014). Beige adipose tissue 
was considered to be the expression form of thermogenesis 
by WAT, which can express Cd137 specifically (Gburcik et 
al., 2012). Moreover, uncoupling protein 1 (UCP1) was 
highly expressed under cold induction in beige adipose 
tissue (Qian et al., 2013). They were essential for the 
regulation of adaptive thermogenesis and other key 
physiological processes (Pfeifer and Hoffmann, 2015). 
Peroxisome proliferator-activated receptor α (PPAR α) 
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was a major transcriptional regulator in lipid metabolism 
and energy homeostasis (Wang, 2018), which can 
promote the expression of UCP1 (Tong et al., 2005); bone 
morphogenetic proteins 7 (BMP7) can induce adipose 
derived mesenchymal stem cells to differentiate into brown 
adipose like cells (Townsend et al., 2013); cycloxygenase 
2 (COX-2) can induce the formation of brown adipocytes 
in WAT (Aguirre et al., 2016); peroxisome proliferator-
activated receptor coactivator 1 α (PGC-1 α) was an 
important transcription factor in the differentiation and 
regulation of brown adipocytes (Norheim et al., 2014; 
Chen et al., 2016); PR domain containing 16 (PRDM16) 
had the function of regulating the formation of BAT-WAT 
and the mutual transformation among various organizations 
(Seale et al., 2007, 2008). The up-regulation of the above-
mentioned gene differentiation factors can promote the 
thermogenesis of adipose tissue; on the contrary, down-
regulation can reduce the thermogenesis. 

Tupaia belangeri (Mammalia: Scandentia: Tupaiidae), 
which was a unique species of Oriental community, mainly 
distributed in Yunnan, Sichuan, Guizhou and other places 
in China. It had a close relationship with primates, which 
had a fast reproduction and low feeding cost. Therefore, it 
is widely used in medical and biological researches (Peng 
et al., 2020). Previous studies of our group showed that 
adipose tissue in T. belangeri increased thermogenesis 
under cold acclimation (Zhu et al., 2017). In winter, the 
thermogenesis of adipose tissue was significantly higher 
than that of spring, summer and autumn, and the expression 
of adipose differentiation factors were also higher than 
that of the other three seasons (Mei et al., 2019); FR (fed 
80% of ad libitum food intake) reduced WAT mass in T. 
belangeri significantly (Gao et al., 2016a). However, 
there were no reports on the plasticity of morphology and 
biochemical indexes in WAT of T. belangeri under FR 
and Re condition. The purpose of the present study was 
to explore the plasticity of WAT in T. belangeri under the 
condition of FR and Re from the individual, tissue and 
molecular levels, so as to provide scientific basis for the 
energy homeostasis mechanism of T. belangeri to adapt to 
food shortage.

MATERIALS AND METHODS

Samples
Adult T. belangeri used in the present study were 

captured from farmland near the city of Luquan (25°25’-
26°22’N, 102°14’-102°56’E, altitude 1650-1700 m). Then 
transported to School of Life Sciences of Yunnan Normal 
University, which were housed individually (40 × 30 × 30 
cm) and were maintained at a room temperature of 25 ± 
1°C, under a photoperiod of 12 h light: 12 h dark (lights 
on at 08:00 h). Food (corn flour 30%, wheat meal 20%, 

eggs 20%, fishmeal 5%, wheat bran 6%, milk powder 
3.6%, sugar 10%, yeast 2%, multidimensional 3% and salt 
0.4%) and water were provided ad libitum for 4 weeks. 
All animal procedures were compliant with the Animal 
Care and Use Committee of the School of Life Science, 
Yunnan Normal University. This study was approved by 
the Committee (13-0901-011).

Effects of FR and Re on body mass, food intake and RMR
We randomly divided 16 adult and healthy tree 

shrews of weight-matched into two groups: the control 
group (n=8, 4♀:4♂) and FR-Re group (n=8, 4♀:4♂). 
Control group was fed ad libitum during 8 weeks, while 
FR-Re group was fed 70% of ad libitum food intake for 
4 weeks, then fed ad libitum for a further 4 weeks. Food 
intake was calculated as the mass of food missing from the 
hopper, subtracting orts mixed in the bedding. Body mass, 
food intake and RMR were measured every two days.

Effects of FR and Re on WAT
Forty eight adult weight-matched T. belangeri were 

randomly assigned to a control group (n=24, 12♀:12♂) and 
a FR-Re group (n=24, 12♀:12♂). After the acclimatizing 
period, the animals of controls were fed ad libitum during 
8 weeks, and FR-Re were acclimated to food restriction 
(70% of ad libitum food intake) for 4 weeks, and then 
refeeding for another 4 weeks, animals were acclimated 
for 8 weeks. On day 0, 28 and 56, animals were randomly 
sacrificed by decapitation from control and FR-Re group 
for the extraction of WAT, respectively.

Measurement of metabolic rates and food intake
Body mass, food intake and RMR were measured 

using the metabolic system (BXY-R, Sable Systems). T. 
belangeri were acclimated to calorimetry cages prior to 30 
min the study and data collection (Weir, 1949).

Histomorphological analysis
After WAT was washed with PBS, it was fixed in 

4% paraformaldehyde. WAT was dehydrate in ethanol 
and xylene solution from low concentration to high 
concentration gradient, embedded in wax and their sections 
were cut which were then stained with hematoxylin and 
eosin.

Flow cytometry analysis
WAT was cut it into pieces in EP tube contaning 1ml 

of 0.1% type I collagenase, incubated at 37 oC for 40 min; 
separate the tissue and cell fully. After centrifugation the 
pellet was fixed in 4% paraformaldehyde and centrifuged 
to pellet 600 μL 0.1% Triton X-100 was added for 30 min. 
The pellet was suspended after centrifugation in 600 μL 
PBS.  The precipitate was mixed (1) In FR-Re, the UCP1 
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antibody was added, and the blank control group was kept 
for 40 min; (II) the antibody Cd137 was added for 40 min, 
and the fluorescent antibody (Alexa fluor 488) was added 
in FR-Re group; only the fluorescent antibody (Alexa fluor 
488) was added in the control group, and the experimental 
group and the control group were kept for 40 min at the 
same time. After centrifugation for 10 min at 1000 R / 
min, the supernatant was removed and PBS was added to 
1 mL. Mix into the flow tube, avoid light, and use  flow 
cytometer (CyFlow Space) to operate.

Gene expression analysis
Real-time qRT-PCR was used to assay expressions of 

PRDM16, BMP7, PPARα, COX-2 and PGC-1α. Species-
specific primer sets for PRDM16, BMP7, PPARα, COX-2 
and PGC-1α, and beta-actin in tree shrews were designed 
according to the gene sequences of Gao et al. (2016b) and 
Mei et al. (2019).

The total RNA kit II Extraction Kit (omega, USA) was 
used to extract RNA from WAT, and tgem-plus (Tiangen, 
China) was used to detect the concentration of RNA. Using 
total RNA as template, cDNA was synthesized according 
to the method provided by fast quant RT Kit (with gdnase) 
kit (Tiangen, China). SYBR Green Master Mix (Kapa) 
was used to amplify cDNA in ABI stepone (USA), and 
then the gene expression of PRDM16, PPAR α, COX-2, 
BMP 7 and PGC-1 α were measured. Each gene in each 
sample was repeated three times by FQ-PCR. The relative 
quantity of gene expression was calculated by 2–ΔΔCt (Mei 
et al., 2019).

Statistical analysis
Data were analyzed using the software package 

SPSS 20.0. Prior to all statistical analyses, data were 
examined for assumptions of normality and homogeneity 
of variance using Kolmogorov–Smirnov and Levene 
tests, respectively. Since sexual effects were found on 
almost none of the measured parameters, data from 
females and males were combined. Differences in body 
mass, food intake and RMR for each group were analyzed 
by repeated measurement ANOVA in Experiment 1. 
Differences between groups on a single experimental day 
were examined using independent t-tests, differences in 
positive expression of UCP1, Cd137 and gene expressions 
for each group were analyzed by one-way ANCOVA with 
body mass as a covariate, followed by Tukey’s post hoc 
test Experiment 2. Results were presented as means ± SE, 
and P<0.05 was considered to be statistically significant.

RESULTS

Effect of FR and Re on body mass, food intake and RMR
There were no significant differences in body mass 

(t=0.23, P>0.05), food intake (t=0.16, P>0.05) and RMR 
(t=0.21, P>0.05) between the control and FR-Re group 
before the experiment. There was no significant changes 
in body mass in the control group (F=0.45, P>0.05), but 
had significant differences in the FR-Re group (F= 8.59,

Fig. 1. Effects of food restriction and refeeding on body 
mass (A) food intake (B) and RMR (C) in T. belangeri. 
*P<0.05, **P<0.01 (compare with control group).
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P<0.01) during the whole acclimation. It showed significant 
differences of body mass on day 2 between two groups 
(t=2.03, P<0.05, Fig. 1A), which decreased 6.79% on day 
28 in FR-Re group compared with control group. There 
was no significant changes in food intake and RMR in the 
control group (food intake: F=0.65, P>0.05, Fig. 1B; RMR: 
F=0.65, P>0.05, Fig. 1C), but had significant differences 
in the FR-Re group (food intake: F=15.36, P<0.01; RMR: 
F=6.21, P<0.01), respectively. Body mass and food intake 
reached the maximum value on day 30 in FR-Re group, 
which were 6.30% and 44.35% higher than those of the 
control group. It showed significant differences for RMR 
on day 8 between two groups (t=2.12, P<0.05). All three 
indices could recover to the level of control group after Re.

Effects of FR and Re on WAT
There was no significant change in the morphology of 

WAT cells in the control group (Fig. 2A, B, C). WAT cells 
were slightly shrunken on day 28 in FR-Re group (Fig. 2E), 
but the morphological changes were not obvious during the 
whole FR-Re group (Fig. 2F). The positive expression of 
UCP1 was 5.31% on day 0, 4.13% on day 28, 4.92% on day 
56, the positive expression of Cd137 was 13.21% on day 0, 
2.16% on day 28, and 3.94% on day 56 (Fig. 3), which had 
no significant differences among three groups (P>0.05). 

There was no significant difference in the expression of 
PRDM16, BMP7, COX-2, PPARα and PGC-1α gene on 
day 0. On day 28, the expressions of COX-2 and BMP7 
gene decreased significantly, which recovered to the level 
of control group on day 56 (Fig. 4A, B), but PRDM16, 
PPARα and PGC-1α expressions had no significant 
difference during the acclimation (Fig. 4C, D, E).

Fig. 2. Morphological study of food restriction and 
refeeding on WAT in T. belangeri.
Control group: 0 d(A), 28 d (B), 56 d (C); FR-Re group: 0 
d (D), 28 d of FR (E), 28 d of Re (F). 

Fig. 3. The flow cytometric analysis diagram on UCP1 and Cd137 of WAT in T. belangeri.
UCP1: 0 d (A, B), 28 d of FR (C, D), 28 d of Re (E, F); Cd137: 0 d (a, b), 28 d of FR (c, d), 28 d of Re (e, f).
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Fig. 4. The expression level on COX-2 (A), PGC-1α (B), PPARα (C), BMP7 (D), PRDM16 (E) gene of WAT in T. belangeri.
Data were presented as means ± SE, the letters on the column express significant difference between groups (P< 0.05).

DISCUSSION

Phenotypic plasticity in physiological and ecological 
characteristics of small mammals changed with the 
environmental variations, so as to achieve a balance 
between energy intake and expenditure (Zhao et al., 
2014). Body mass was an important indicator to reflect the 
nutrition of small mammals, and its stability also depends 
on the balance of energy budgets (Kouda et al., 2004). 
Small mammals often faced the threat of food shortage 
in the wild due to climate changes (Jackson et al., 2001). 
Changes of body mass, energy intake, organs and digestive 
tract were the important strategies for animals to adapt to 
the fluctuation of FR (Zhao and Wang, 2007). In order 
to maintain the energy balance of body mass regulation, 
most animals usually showed a decreasing in body mass 
and RMR in response to food shortage (Zhan et al., 2009). 
The present results showed that body mass, food intake 
and RMR in T. belangeri were all decreased under the 
condition of FR, and returned to the control level after 
Re. It may indicate that in response to food shortage, T. 
belangeri can make up for the lack of energy intake by 
reducing body mass, energy intake and thermogenesisi, 
so as to keep its physiological metabolism in a dynamic 
balance, which was similar with the studies of Rattus 
norregicus, Cricetulus barabensis and Eothenomys miletus 
in the condition of FR (Alvarenga et al., 2005; Zhao and 

Cao, 2009; Zhu et al., 2013). 
Adipose tissue was not only an energy storage organ, 

but also an endocrine organ with metabolic and immune 
functions (Barbatelli et al., 2010; Chmelar et al., 2013). 
White fat cells contain lipid droplets, which filled almost 
all of the cytoplasm and played important role in energy 
storage of mammals (van Dam et al., 2017). In the present 
study, it showed that the white fat cells in T. belangeri were 
slightly smaller after FR, and the cell morphology restored 
to the control group after Re, suggesting that T. belangeri 
can restore WAT function to maintain its survival, which 
was consisted with the changes of positive expressions 
of UCP1 and Cd137. It showed that aerobic exercise can 
promote energy metabolism by increasing the expression 
of BMP7 in rats (Li et al., 2019). COX 2 is not only an 
effective molecule in the adrenaline signaling pathway 
of WAT, but also an essential factor for the synthesis of 
UCP1 in the process of inducing the formation of brown 
adipocytes in WAT (Lau et al., 2013; Aguirre et al., 
2016). In our results, the relative expressions of BMP7 
and COX 2 in WAT decreased under the condition of FR, 
which recovered to the level of control group after Re. It 
suggested that FR may reduce the RMR and inhibit the 
expression of fat transdifferentiation factors (BMP7 and 
COX 2) of WAT in T. belangeri.
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CONCLUSION

In conclusion, FR reduced body mass, food intake, 
RMR and the expressions of BMP7 and COX 2 in WAT, 
which can be recovered to the control level after Re. T. 
belangeri can regulate energy metabolism by reducing 
thermogenesis and inhibiting the expression of fat 
transdifferentiation factors under the environment of 
food shortage, and adjust energy metabolism when the 
food resource was restored, leading energy homeostasis 
reached to a dynamic balance, so as to adapt to the habitat 
environment of food resource fluctuation.
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