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The western Guangdong Waters (WGW) locates in the northern South China Sea (SCS), and is an 
important area for fishes spawning, feeding, breeding, and migrating. This study built the Suitability 
Index (SI) Model for the spatial-temporal distribution of spawning grounds in the WGW based on the 
simple non-linear regression, using satellite remote sensing and investigation data during April to June 
in 2014 and 2015. Satellite data including Sea Surface Temperature (SST), Sea Surface Salinity (SSS) 
and water Depth from Digital Elevation Model (DEM) were used to build the Habitat Suitability Index 
(HSI) model, based on Maximum Model (MAXM), Minimum Model (MINM), Arithmetic Mean Model 
(AMM), and Geometric Mean Model (GMM). Results showed that the accuracy of the HSI model was 
80%. HSI model built for fish-egg density during April, May and June based on GMM and MINM had the 
highest accuracy. High HSI area was mainly distributed in the eastern Leizhou Peninsula. HSI distribution 
was similar to the investigation of spawning grounds, indicating the good performance of the HSI model 
based on GMM and MINM in forecasting spawning grounds in the Western Guangdong Waters.

INTRODUCTION

Spawning ground is the waters for mating, spawning, 
hatching and growing of fish, shrimp and shellfish. 

Therefore, it is an essential space for aquatic creatures 
living and breeding (Wan et al., 2010). 

Fish egg is a crucial stage in the early life of fishery 
population, which is also the stage most vulnerable to the 
changes of habitat environment. Fishes concentrate and 
spawn in an environment suitable for the survival and 
growth of fish eggs to improve the survival rate of their off 
springs (Bellier et al., 2010). Previous studies proposed 
that spatial distribution of the fish eggs were closely 
related to sea surface temperature, sea surface salinity, 
depth (Lelièvre et al., 2014) and seafloor relief (Flores et 
al., 2019) of the spawning ground. 

Western Guangdong Waters (WGW) located in 
the northern South China Sea (SCS), stretches from the 
estuary of the Pearl River to Hainan Island, and meets the 
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Beibu Gulf in the Qiongzhou Strait (Su et al., 2019). It is 
an important area for many commercial fishes spawning, 
feeding, breeding and migration (Yu et al., 2019c). 
Previous studies centered on biological characteristics 
of fish eggs and species composition (Emel’yanova and 
Pavlov, 2012), which provided fundamental information 
of spawning grounds. However, the response mechanism 
of spawning grounds to habitat environmental factors was 
less known.

Habitat suitability index (HSI) was widely applied in 
studies on fishery forecasts for being able to simulate the 
organism’s response to environmental factors (Eastwood 
et al., 2001). The HSI model had developed rapidly 
in fishery research by combining with satellite remote 
sensing technology (Yu et al., 2019b). For example, HSI 
was used to forecast the distribution of the fishing ground 
of Ommastrephes bartramii (Yu et al., 2020), and analyze 
the optimum fishery habitats in the spawning season 
(Gillenwater et al., 2006). HSI was also used to analyze 
the characteristics of its fishing ground of Dosidicus gigas, 
and explore the relationship between its habitat quality and 
environmental factors (Yu and Chen, 2018b). This study 
built a model for fish eggs and environmental factors in the 
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WGW based on HSI, explored the impact of environmental 
changes on the location and size of spawning grounds, 
analyzed the spatial-temporal changes of fish-egg density, 
and forecast the location and abundance of spawning 
grounds in the study waters.

Satellite remote sensing offers all-weather, large-
scale and high-resolution sea surface data, and has already 
been applied in marine fisheries (Yu et al., 2019a). This 
study used field investigation data and remote sensing 
data, built and verified the HSI model based on marine 
environmental factors. The relationship between major 
fishes’ spawning grounds and environmental factors in the 
WGW was also explored. The results of this study provide 
references for protecting the habitats of major fishes in the 
northern SCS. 

MATERIALS AND METHODS

Investigation and identification of fish eggs
Fish eggs data came from the spawning ground 

investigation in the WGW during April to June in 2014 
and 2015 respectively, covering the areas of 110°-113°E 
and 19.5°-22°N (Fig. 1). Fish eggs were sampled by 
macro-plankton nets, with hauling speed of 1.5 n mile/h. 
Fish eggs were preserved in 5% formaldehyde solution, 
for morphological characteristics and counting (Wang et 
al., 2010). Fish-egg data were calculated as one fishing 
area according to the spatial resolution (0.25°×0.25°), and 
the unit of fish-egg density was ind/1000m3. Fish eggs 
data included voyage of fishing boats, investigation time, 
longitude, latitude, and spawn density.

Fig. 1. Research area and investigation stations (dash line 
specifies the scope of satellite data extraction).

Satellite remote sensing data
Sea surface temperature (SST), sea surface salinity 

(SSS) and digital elevation model (DEM) of the seafloor 
relief were taken from satellite remote sensing (Yu et 
al., 2018c). SST was from NASA MODIS Aqua (https://
oceandata.sci.gsfc.nasa.gov/), with a temporal resolution 
of 8 days, a spatial resolution of 4 km. SSS was from Global 
Ocean Physical Reanalysis Product data of Copernicus 

Marine Environment Management Service (CMEMS, 
http://marine.copernicus.eu), with a temporal resolution of 
the month, and a spatial resolution 1/12°×1/12°. DEM was 
from Google Earth-elevation data, elevation level was 18, 
spatial resolution 8.85 m. Depth data was from elevation 
representation in DEM data. 

Spatial autocorrelation analysis
Spatial autocorrelation refers to the following 

issue: values of an attribute at closer geographical sites 
are more similar (positive autocorrelation) or more 
dissimilar (negative autocorrelation) than values at two 
distant sites (Wang et al., 2016). At the beginning of the 
study, the global spatial autocorrelation (Cliff and Ord, 
1982) analysis was used to determine whether there is a 
significant relationship between the fish-egg density and 
geographical factors (Latitude and longitude). Global 
spatial autocorrelation parameters include Global Moran’s 
I and Getis-Ord General G (Swetnam et al., 2015). They 
were used to detect global spatial cluster and its variations 
in the study. Global Moran’s I is calculated as follows (Ren 
et al., 2020):

xi is fish-egg density of pixel i, xj is fish-egg density of 
pixel j, x is average fish-egg density, n is the number, and 
Wij is the aggregate of all spatial weights. If the pixel i and 
pixel j are adjacent, the value of corresponding element in 
the matrix Wij is 1, otherwise it is 0.

To investigate the statistical significance of the 
Moran’s I statistic, Z(I) is calculated as follows:

where E(I) is the expected value of I: E(I) = − 1/(n − 1), 
and VAR(I) is the expected variance of I: VAR(I)=E(I2)-
E(I2). When a significance level is established, a Moran’s 
I approaching +1 indicates that fish-egg density data is 
spatially correlative. When the value of Moran’s I is close 
to −1, a discrete data pattern is observed. If the Moran’s I 
value is close to 0 When |Z(I)|> 1.96, P value < 0.05 (Xiao 
et al., 2018), the null hypothesis is accepted and the fish-
egg density data are distributed randomly (Getis and Ord, 
1992).

Getis-Ord General G is determined as follows (Getis 
and Ord, 1992):

where xi is fish-egg density of pixel i, xj is fish-egg 
density of pixel j, and Wij is the spatial weight inversely 
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correlated with the distance between the two locations. 
The expectation of G and Z(I) is calculated as follows:

In general, if the value of G is greater than E(G), the high-
value data tend to cluster. Otherwise, low-value data tend to 
cluster. The fish-egg density data in the regions distributes 
randomly when G is equal to E(G) (Ren et al., 2020).
Suitability index model

Suitability index (SI) model was built accordingly to 
fish-egg density, SST, SSS and Depth data. This research 
supposed the waters with the highest fish-egg density 
was the optimum spawning area, HSI was 1. And the 
waters with the least fish-egg density (0) was the unsuited 
spawning area, HSI was 0. Of the spawn data, 80% was 
applied to build the model, and the left 20% to verify the 
model. SI of the single-factor habitat was calculated using 
the equation (Hua et al., 2020).

Where SIi refers to the suitability index in the ith 
month; Yi is the fish-egg density in the ith month; Yi,max is the 
maximum fish-egg density being caught in the ith month. 

Habitat suitability index model
Using the simple non-linear regression (Fan et al., 

2015; Li et al., 2016), the relation model between SI and 
SST, SSS and Depth could be built, as the equation below. 

Where, A and B indicate coefficients of the model, 
and X the value of environmental factors. HSI was 
calculated based on the single-factor SI using Maximum 
Model (MAXM) (Yu et al., 2019b), Minimum Model 
(MINM) (Van der Lee et al., 2006), Arithmetic Mean 
Model (AMM) (Yu et al., 2018a) and Geometric Mean 
Model (GMM) (Tian et al., 2009), in below equations.

Where, SST-SI, SSS-SI and Depth-SI were the SI-
value of SST, SSS and Depth.

The left 20% investigation data were taken into the 4 
equations to verify the accuracy of the model. The forecast 
was considered accurate if the error between theoretical 

value and actual value was less than 0.4, and inaccurate 
if not (Tian et al., 2009). HSI distribution was plotted 
through ArcGIS 10.5 (Wang et al., 2019). 

RESULTS

Species identification
According to the morphological characteristics, 

major fish eggs in the area belong to: Trichiurus haumela, 
Carangidae, Nemipteras virgatus, Sardinella aurita, 
Anchoviella commersonii, which are consistence with 
related researches (Zhang et al., 2016; Zhao and Jia, 
2020). The fish-egg density of major fish accounts for 
more than 90% of the total density. These fish eggs are 
popular commercial fish eggs and generally distributed in 
the tropical and warm waters (Yu et al., 2019b).

Global spatial autocorrelation of spawning grounds
In Table I, the Global Moran’s I, Getis-Ord General 

G, their expectations and z-scores were calculated with 
fish-egg density data in the study area from April to June. 
The values of Global Moran’s I varied from 0.22 to 0.36 
and were significant at the 95% confidence level (Z (I) > 
1.96, P value<0.05). This indicated that fish-egg density in 
the study area showed significant spatial correlation from 
April to June. General G observations are all larger than 
expectations and were significant at the 95% confidence 
level (Z (I) > 1.96, P value<0.05). This suggested that fish-
egg density in the study area tended to be a cluster of high 
values.

Table I. Global spatial autocorrelation of fish-egg 
density in WGW from April to June.

Month Moran’s I Z(I) General G E(G) Z(G)
April 0.36 6.79 0.000019 0.000002 6.97
May 0.30 5.01 0.000008 0.000002 5.40
June 0.22 2.77 0.000006 0.000002 2.43

Between April and June, the Moran’s I decreased 
from 0.36 to 0.22, demonstrating a significant decrease 
in the fish-egg density cluster. The difference between 
estimated and expected General G decreased, indicating 
that the correlation degree of high-value fish-egg density 
data decreased. Moran’s I peaked at 0.36 in April as did 
the difference between measured and expected value 
of General G. In June, the estimated value of Moran’s I 
(0.22) and the difference between estimated and expected 
General G were the lowest for the study period. The global 
spatial autocorrelation analysis has shown that the fish-egg 
density distribution in the study area has significant spatial 
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autocorrelation and the high value area has been cluster.

SI of environmental factors
According to the simple linear regression, SI of each 

environmental factor and fish-egg density in different 
months were shown in Table II. The significance test (P 
< 0.05) indicated that the models were quite accurate. 
Through the fitting of SST, SSS and Depth, the comparison 
chart between the actual fish-egg density and the fitting 
result was shown in Figure 2. SI model of fitting factors 
in each month reflected variations of fish-egg density with 
the changes of environmental factors. All models showed 
unimodal distribution, and the simulation results were 
basically correct.

 
Table II. SI models of environmental factors.

Month Variable SI model P value
April SST SI=e-0.98927×(SST-24.81931)2 0.0375

SSS SI=e-1.97031×(SSS-33.08861)2 0.0002
Depth SI=e-0.0161×(Depth-9.1008)2 0.0000

May SST SI=e-0.63401×(SST-28.13493)2 0.0026
SSS SI=e-0.07773×(SSS-35.40476)2 0.0000
Depth SI=e-0.01031×(Depth-12.55199)2 0.0001

June SST SI=e-0.64818×(SST-29.37173)2 0.0001
SSS SI=e-2.8732×(SSS-33.99679)2 0.0392
Depth SI=e-0.00232×(Depth-19.97159)2 0.0071

Optimum value of environmental factors
By obtaining the first derivative of each SI model, 

making it equal to zero, the value at the peak SI of each 
environmental factor could be calculated, that is, the 
optimum value of the spawning ground environmental 
factor in this month (Li et al., 2016). The results were 
shown in Table III.

Table III. Optimum value of environmental factors.

Month SST (°C) SSS Depth (m)
April 24.82±0.2 33.09±0.1 9.1±0.55
March 28.13±0.17 35.40±0.73 12.55±0.81
June 29.37±0.12 34.00±0.61 19.97±4.3

As for SST, the suitable range for fish eggs in April 
was 24.62-25.02°C, the optimum SST was 24.82°C. 
The suitable SST range for fish eggs in May was 27.96-
28.31°C, the optimum was 28.13°C. In June, the suitable 
SST range for fish eggs was 29.25-29.50°C, the optimum 
was 29.37°C (Fig. 2, Table III). 

As for SSS, the suitable range for fish eggs in April 
was 32.99-33.19 Practical Salinity Unit (PSU), the 
optimum SSS was 33.09 PSU. The suitable SSS range for 
fish eggs in May was 34.67-36.14 PSU, the optimum was 
35.40 PSU. In June, the suitable SSS range for fish eggs 
was 33.39- 34.60 PSU, and the optimum was 34.00 PSU 
(Fig. 2, Table III).

As for Depth, the suitable range for fish eggs in April 
was 8.55-9.65 m, the optimum was 9.1 m. The suitable 
Depth range in May was 11.74-13.36 m, the optimum was 
12.55 m. The suitable depth range in June was 15.67-24.28 
m, and the optimum was 19.97 m (Fig. 2, Table III).

Verification of HSI model
AMM, GMM, MAXM and MINM were applied to 

establish the HSI model, and data for model verification 
were imported to the models to get the theoretical HSI 
value and compare with the actual SI value. The model 
was considered accurate if the error between the HSI value 
and actual value was less than 0.4 (Tian et al., 2009), the 
precision verification results of the models were shown in 
Table IV.

Table IV. Model verification.

Month AMM GMM MAXM MINM
April 52.75% 95.60% 15.38% 94.51%
May 37.37% 90.91% 18.18% 77.78%
June 31.31% 48.48% 14.14% 63.64%

GMM gained the highest precision in April (95.60%) 
and May (90.91%), and MAXM had the lowest precision 
in April (15.38%) and May (18.18%) (Table III). In 
June, MINM had the highest precision (63.64%), and 
MAXM had the lowest precision (14.14%). Therefore, 
GMM showed the highest precision in April and May, 
and MINM had the highest precision in June. According 
to the verification results, GMM was applied to establish 
HSI model with SI data in April and May, and MINM was 
applied to build HSI model with the data in June. The 
precision of the established HSI model in each month was 
higher than 60% (Table IV). 

HSI forecast results basically complied with the 
distribution of fish eggs (Fig. 3). Of which, fish-egg 
density in April was higher (>5000ind/1000m3) in the 
northwest of the study waters (110.5°-111°E, 21°-21.5°N), 
HSI in this region was also higher (>0.6). In the northeast 
of the study waters (111.5°-113°E, 21°-21.5°N), fish-egg 
density was lower (<2500ind/1000m3), and HSI was also 
lower (<0.4). The forecast results complied with the actual 
distribution in these areas. It was noticed that in the waters 
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Fig. 2. Comparison between actual fish-egg density and fitting results.

Fig. 3. Spatial-temporal distribution of fish eggs and HSI results (a) April, (b) May, (c) June.

around the Qiongzhou Strait (110.5°-111°E, 20°-20.5°N), 
fish-egg density was higher (>5000ind/1000m3), but HSI 
in this region was lower (<0.4). 

Fish-egg density in the northwest of the study 
waters (110.5°-111°E, 21°-21.5°N) in May was higher 
(>5000ind/1000m3), HSI in this region was also higher 
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(>0.6). But in the north of the study area (111.5°-112°E, 21°-
21.5°N), fish-egg density was higher (>5000ind/1000m3), 
but HSI was lower (<0.4). In the waters around the 
Qiongzhou Strait (110.5°-111°E, 20°-20.5°N), fish-egg 
density was higher (>5000ind/1000m3), but HSI in this 
region was lower (<0.4). 

In June, higher fish-egg density (>5000ind/1000m3) 
shifted from northwest to south (110.75°-111.25°E, 20.5°-
21.25°N). Higher HSI (>0.6) also shifted the southwards, to 
the region of 110.5°-111°E, 20.5°-21°N, in this region HSI 
complied with the actual value basically. In the northwest 
of the study waters (111.5°-113°E, 21°-22°N), fish-egg 
density was lower (<2500 ind/1000m3), and HSI was also 
lower (<0.4), the forecast results basically complied with 
the actual value. In the waters around the Qiongzhou Strait 
(110.5°-111.5°E, 19.75°-20.5°N), fish-egg density was 
lower (<2500ind/1000m3), HSI was lower (<0.4). 

DISCUSSION

Relationship between HSI and investigation  data
HSI model can be built according to the non-linear 

relationship between fish-egg distribution and marine 
environment, its advantages of forecasting the distribution 
of spawning grounds accurately (Gillenwater et al., 2006). 
The spatial autocorrelation analysis showed that the 
distribution of fish eggs was clustered and the areas with 
high fish-egg density were clustered (Table I). HSI model 
can better forecast high-density region. The high-density 
region (northwest from April to June) and low-density 
region (northeast in April and June, and the Qiongzhou 
Strait in June) forecast by the model complied with the 
actual distribution of fish-egg density (Fig. 3). Previous 
studies showed that the spatial distribution of high value 
area forecasted by HSI model was correlation with the 
area of high stock density (Yu et al., 2018a; Hua et al., 
2020), which is consistent with this research. The tendency 
of high-density fish-egg shifting southeastwards in April 
and May, and high-density fish-egg shifting southwards in 
May and June was the same as the results in the HSI model 
(Fig. 3). Previous studies have shown that the HSI model 
can accurately forecast spatial position changes (Hua et 
al., 2020). 

However, the regions with actual high fish-egg 
density (the north region in May, and the Qiongzhou Strait 
in April and May) were marked as the low-density regions 
by the model, thus the forecast results varied greatly from 
the actual distribution of fish-egg density (Fig. 3). As 
fish eggs could not swim or move spontaneously (Wan 
et al., 2010), fish eggs floating in water were vulnerable 
to current. Therefore, complicate seafloor, which slows 
down the current, enables fish eggs to gather and provide 

a favorable survival environment for the spawning groups 
(Yi et al., 2013). Seafloor around the Qiongzhou Strait 
had greater fluctuations (dense isobath), its large seafloor 
slopes made complicate underwater environment (Fig. 1b), 
providing an ideal environment for spawning, resulting in 
high fish-egg density in this area during April and May. 
In this research, the seafloor factor, such as underwater 
topographic slope, was not considered in the HSI model, 
partly resulted to the deviation between HSI forecast and 
actual value in the Qiongzhou Strait. 

High-value regions in the WGW forecast by HSI 
model showed the distribution tendency of “higher 
west and lower east” (Fig. 3), and continuously shifted 
southwards with the time. This was connected with the 
ocean current in this area. The previous study showed that 
there was a westward coastal current all the year-round in 
the WGW. The current flew westwards and then shifted 
towards the south nearby the Leizhou Peninsula, and 
finally entered the Beibu Gulf after flowing westwards 
through the Qiongzhou Strait (Wang et al., 2010). Fish 
eggs floating in water in each moth would be influenced by 
the westward coastal current and drifted to the west, then 
gathered nearby the Leizhou Peninsula, and finally formed 
the distribution tendency of higher west and lower east. In 
addition, the westward coastal current shifted southwards 
near the Leizhou Peninsula, resulting in the southwards 
shifting of the high HSI region in each month.  

Relationship between the spatial distribution of spawning 
grounds and marine environment

Water temperature is a key factor influencing quantity 
and distribution of fish eggs, because it could influence 
quantity, distribution and population structure by affecting 
the gonad development and spawning migration of adult 
fishes (Mendiola et al., 2006). This research obtained the 
optimum SST for fish eggs in the WGW was 24.82 °C 
(April), 28.13 °C (May) and 29.37 °C (June),  respectively 
(Table III). Previous researches showed that the optimum 
water temperature for fish eggs of Trichiurus haumela 
in the WGW was 25-28 °C (Lin, 1981), which complied 
with the results of this research.  From April to June, 
suitable temperature for fish eggs increased gradually, 
but the high HSI area in June achieved the minimum, 
and fish-egg density in June reduced greatly from that 
in April and May (Fig. 3). The water temperature had 
a substantial impact on the process of metamorphosis 
(Régnier et al., 2018) and hatching speed (Poloczanska et 
al., 2013). In addition, higher water temperature in June 
(Fig. 2g) would reduce the survival rate of fish eggs that 
intolerable to high temperatures. For the fish eggs suitable 
for higher temperatures, the higher water temperature 
would accelerate the development of fish eggs, shorten the 
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growth period, and promote the speed of hatching, which 
both led to the decrease of fish-egg density (Mendiola 
et al., 2006). As a result, water temperature provided a 
significant reference for defining the quantity and location 
of spawning grounds in the WGW. 

Salinity is also an important factor influencing 
the metabolism of fishes, and fish eggs as the most 
fragile stage in the fish life are most vulnerable to the 
environment (Giffard-Mena et al., 2020). According to the 
SI model, the optimum SSS for fish eggs in the WGW in 
the northern SCS was 33.09±0.1 PSU (April), 35.40±0.73 
PSU (May), and 34.00±0.61 PSU (June) (Table III). The 
previous study showed that the Fish eggs in the northern 
SCS lived in the regions with SSS of 33.24-34.66 PSU (Li 
et al., 2014), the optimum SSS for fish eggs of Trichiurus 
haumela was 33.0-34.5 PSU (Lin, 1981), the optimum 
SSS for fish eggs of Decapterus maruadsi was 32.0-35.0 
PSU (Zhang, 1985), and 33-34.4 PSU for fish eggs of 
Sardinella aurita (Jiang and Lin, 1983), which complied 
with results of this research. By comparing the actual fish-
egg density and fitting results of the SI model, it was found 
that fish-egg density achieved high value (Fig. 2b, 2e, 2h) 
as SSS was higher (SSS>33). The possible reason was that 
salinity impacted the embryo development by changing 
the osmotic pressure of fish eggs, too high or low salinity 
would reduce the hatching rate by blocking the normal 
exchange between oosperms and surrounding media, and 
thus caused the developmental malformation of embryos 
(Giffard-Mena et al., 2020). Moreover, salinity also 
influenced the vertical distribution of fish eggs  in water. In 
low-salinity waters, fish eggs were likely to concentrate in 
piles and lack of oxygen held back the spawn development. 
On the contrary, in high-salinity waters, fish eggs could 
suspend or float in water and easily breathe, which would 
contribute to a higher hatching rate of fish eggs (Nissling 
et al., 2017). 

Fishes preferred to spawn in deeper waters with 
suitable conditions (Lelièvre et al., 2014). The optimum 
Depth obtained by the SI model was 9.1 m (April), 12.55 
m (May) and 19.97 m (June) (Table III). Fish eggs of 
Anchoviella commersonii in the study waters were mainly 
distributed in water depth < 20 m (Wu, 1989), and fish 
eggs of Sardinella aurita in water depth around 10 m 
(Zhang and Huang, 2003), which consisted with this study. 
Spawning grounds in the WGW were mainly distributed 
in water depth < 30 m, fish-egg density in shallow waters 
was obviously higher than that in deep waters (Fig. 2c, 2f, 
2i). The breeding interval of fishes in deep water might be 
prolonged for the harsh environment and less food (annual 
to perennial), resulting in lower fish-egg density in deep 
waters than those in shallow waters (Fernandez-Arcaya et 
al., 2016). 

Method selection of HSI model building 
In the construction of the HSI model, the most applied 

methods include Continued Product Model (CPM), 
MAXM, MINM, AMM, GMM and so on (Vayghan et al., 
2013). This study compared HSI models built on the basis 
of MAXM, MINM, AMM and GMM, the precision of the 
models varied greatly (Table IV). GMM-based HSI had the 
highest accuracy (Table IV), a geometrical mean of each 
SI factor was used to build the model. In the HSI model for 
Trachurus murphyi in the southeast Pacific, GMM could 
better define the habitat and predict the habitat area (Li 
et al., 2016). Using fewer factors in the model building 
at the same time could improve the accuracy of GMM 
(Terrell, 1985), in this research GMM has the highest 
accuracy in April and May. Simultaneous application of 
3 SI factors helped improve the accuracy of the GMM-
based model, thus GMM was used to build HSI model in 
April and May. MINM had the second highest accuracy 
only after GMM (Table IV), and its evaluation of fish-egg 
density was mostly conservative for using the minimum 
value of SI factors, thus it was suitable for low-density 
regions and often applied to evaluate and build the HSI 
model for fishery conservation areas (Van der Lee et al., 
2006). According to the HSI model for Trachurus murphyi 
in the southeast Pacific Ocean, MINM had higher accuracy 
in months with lower resource density (Fang et al., 2010). 
According to the HSI model for Decapterus maruadsi 
in the north of the SCS, MINM was suitable for model 
building in spring with fewer resources (Fan et al., 2015). 
In this research, fish-egg density in June reduced greatly 
from that in April and May, and low-density spawning 
regions were widely distributed (Fig. 3c), thus MINM had 
the highest accuracy in June. 

AMM was a frequently-used method of the building 
model, mostly applied in assessing the quantity of resources 
by building the model on the basis of SI factors’ mean. The 
forecast results of AMM were less vulnerable to extreme 
SI values, but different influence degrees of SI factors were 
not considered, because all SI values were equally treated 
(Yu et al., 2018a). In the western Pacific, the HSI model 
based on the AMM could better reflect the distribution of 
Katsuwonus pelamis under different El Niño events (Yen 
et al., 2017). AMM showed lower accuracy in this research 
(Table IV). Using maximum values of SI factors to build 
HSI model, MAXM always led to too optimistic HSI 
results, and its accuracy was influenced by being limited 
by the maximum SI factors (Yu et al., 2019b). MAXM was 
suitable for forecasting the center of spawning grounds 
and the months with higher resource density (Fang et al., 
2010). To build the HSI model for Trachurus japonicus 
in the north of the SCS, MAXM was only applicable for 
the seasons with high resource density (Yan et al., 2018). 
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In this research, there were maximum values in each 
month for the extraordinarily high fish-egg density, such 
extraordinary maximum values in the model building led 
to over-estimation of fish-egg density. Therefore, MAXM 
had the lowest accuracy in this research. 

CONCLUSIONS

In this study, the HSI model of the distribution of 
spawn grounds in the WGW was built, using satellite 
remote sensing and field investigation. The study found 
that the HSI model based on the GMM and MINM could 
better reflect the distribution and shifting of spawning 
grounds, and it could better reflect the relationship between 
the spawning grounds and the marine environment in 
the WGW. The distribution of spawning grounds in the 
WGW was forecasted also. Environmental factors which 
were acquired easily from remote sensing were used to 
build the HSI model. In order to improve the accuracy 
of HSI forecasting, other parameters such as spatial 
autocorrelation, seafloor relief, current, wind, etc. will be 
considered in the follow-up research. 
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