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The present study was aimed at examining the role of hypothalamic neuropeptides genes expressions on 
body mass regulation under different photoperiods in Eothenomys miletus, body mass, food intake, se-
rum leptin levels and hypothalamic neuropeptide neuropeptide Y (NPY), Agouti related peptide (AgRP), 
pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART) expressions were 
measured. The results showed that short photoperiod reduced body mass and body fat mass, and increased 
food intake. But serum leptin levels showed no significant differences between short photoperiod group and 
long photoperiod group, and serum leptin levels showed a positive correlation with body fat mass. Hypo-
thalamic neuropeptide NPY, AgRP, POMC and CART expressions had no significant differences between 
two groups. Leptin was negatively correlated with NPY expression, but not correlated with CART, POMC 
and AgRP expressions. All of the results suggested that short photoperiod can reduce body mass, body fat 
mass, increased food intake. Leptin may play a regulation on body mass and energy metabolism by acting 
on hypothalamic neuropeptide of NPY expression under different photoperiods in E. miletus.

INTRODUCTION

Photoperiod, as a kind of environmental and ecological 
factors, plays an important role in seasonal changes of 

energy metabolism in small mammals (Zhao and Wang, 
2005), especially for energy balance and thermogenesis in 
rodents (Wang et al., 2006; Zhu et al., 2013). At present 
there had many researches, such as short photoperiod had 
no effect on thermogenesis in Clethrionomys glareolus and 
Clethrionomys rutilu (Feist and Feist, 1986; Heldmaier 
et al., 1989), but affected the thermogenesis in Microtus 
ochrogaster (Wunder, 1985), Dipodomys ordii (Gettinger 
and Ralph, 1985), Phodpus sungorus (Wiesinger et al., 
1989), Acomys cahirinus (Haim and Zisapel, 1999), 
Meriones unguiculatus (Li and Wang, 2005), Microtus 
agrestis (Król et al., 2005) and Apodemus mystacinus 
(Spiegel and Hsim, 2004). Effect of photoperiod on body 
mass changing in mammals were not similar, for example, 
short photoperiod decreased body mass in Sekeetamys 
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calurus (Haim, 1996) and Lasiopodomys brandtii (Li and 
Wang, 2007), but had no effect in Meriones unguiculatus 
(Li and Wang, 2007), Apodemus sylvaticus (Klaus et al., 
1988) and Acomys cahirinus (Khokhlova et al., 2000).

Leptin can regulate food intake and body mass in 
small mammals (Friedman and Halaas, 1998). Leptin 
plays a pivotal role in the regulation of energy intake and 
energy expenditure in animals (Abelenda et al., 2003), 
which plays an important role in the regualtion of body 
mass (Hausman and Barb, 2010). It showed that lower 
leptin levels can increase food intake in rats (Flier, 1998), 
but for Lasiopodomys brandtii (Li and Wang, 2007) and 
Phodopus sungorus (Klingenspor et al., 1996) in winter, 
lower concentrations of leptin decreased food intake. In 
addition, it confirmed that there was a positive correlation 
between leptin and body fat mass in many mammals, such 
as Meriones unguiculatus (Li and Wang, 2005), Phodopus 
sungorus (Johnson et al., 2004) and Dicrostonyx hudsonius 
(Klingenspor et al., 2000). The hypothalamic arcuate 
nucleus (ARC) can regulate food intake under environmental 
changing (Aguilar et al., 2011). Within the ARC, there are 
two types of neuropeptides: orexigenic neuropeptides: 
neuropeptide Y (NPY) and agouti-related protein (AgRP); 
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and anorectic neuropeptides: pro-opiomelanocortin 
(POMC) and cocaine- and amphetamine-regulated tran-
script (CART); the balance between NPY/AgRP and 
POMC/CART expressions can inhibit food intake and 
stimulate energy expenditure (Friedman and Halaas, 1998). 
Leptin is mediated by a hierarchy of both anorectic and 
orexigenic neuropeptidergic neurons in specific sites in the 
hypothalamus (Arch, 2005). Hypothalamic neuropeptide 
genes expressions affected body mass and energy balance 
under different photoperiods, such as injection of NPY 
increased food intake significantly under the different 
photoperiods in Phodopus sungorus (Boss-Williams and 
Bartness, 1996); injection of NPY can affect body mass and 
activity significantly in mice under different photoperiods 
(Kim and Harrington, 2008). Short photoperiod increased 
the AgRP expression significantly in Phodopus sungorus, 
leading to the increase of food intake (Mercer and Tups, 
2003). It showed that POMC expression appeared rhythm 
changes in rat (Jamali and Tramu, 1997). And short 
photoperiod reduced CART expression significantly in rats 
(Khorooshi et al., 2008).

Eothenomys miletus is an inherent species in 
Hengduan mountain region (Zhu et al., 2010). Previous 
studies showed that E. miletus in short photoperiod 
reduced body mass, body fat mass, increased the 
thermogenesis and uncoupling protein 1 content (Zhu et 
al., 2011). The aims of this study were to evaluate the role 
of hypothalamic neuropeptides genes expressions on body 
mass regulation under different photoperiods in E. miletus. 
We hypothesized that E. miletus would respond to short 
photoperiod by reducing body mass, body fat mass, and 
serum leptin levels, increasing food intake and adjusting 
the hypothalamic neuropeptides genes expressions. We 
predicted that E. miletus may change the hypothalamic 
neuropeptides genes expressions to regulate body mass, 
and leptin may involve in the regulation of hypothalamic 
neuropeptide genes expressions in E. miletus under 
different photoperiods.

MATERIALS AND METHODS

Samples
E. miletus were obtained from a laboratory colony, 

which were captured in farmland (26°15´~26°45´N; 
99°40´~99°55´E; altitude 2,590m) in Jianchuan County, 
Yunnan province, 2010. E. miletus were maintained at 
a room temperature of 25±1°C, under a photoperiod of 
12L:12D (with lights on at 08:00), food (standard mice 
chow pellets; produced by Kunming Medical University, 
Kunming) and water were provided ad libitum. All animal 
procedures were compliance with the Animal Care and 
Use Committee of School of Life Science, Yunnan Normal 

University. This study was approved by the Committee 
(13-0901-011). Young individuals were excluded in 
present study. After 1 month of stabilization, 12 male E. 
miletus were randomly divided into the following two 
experimental regimes: short photoperiod group (n=6) that 
were fed ad libitum during 4 weeks under 25oC, under a 
photoperiod of 8L:16D (with lights on at 08:00), and a 
long photoperiod group (n=6) in which each animal was 
fed ad libitum under 25oC, under a photoperiod of 16L:8D 
(with lights on at 08:00) for 4 weeks. On day 0 and day 
28, body mass and food intake were measured, all animals 
were sacrificed between 0900h and 1100h by decapitation 
after 28 day, determination of body fat mass, hypothalamic 
neuropeptide genes expressions and serum leptin levels. 
Before the experiment, body mass between the two groups 
showed no significant differences (P>0.05). Total body fat 
was extracted from the dried carcass by ether extraction in 
a Soxhlet apparatus (Zhang and Wang, 2007).

Measurement of food intake
Food intake was measured by food equity (Zhao 

and Cao, 2009). Each animal was put in a metabolic cage 
(20×15×15cm3) with no nest materials, and fed laboratory 
mice chow pellets. Animals were fed a fixed quantity at a 
set time (9.5–10.5g, 11:00 am), and the next day body mass 
was assessed, and residual food collected. Residual food 
was dried in a vacuum dryer until the mass was invariable.

Measurement of serum leptin levels
Serum leptin levels were determined by 

radioimmunoassay (RIA) with the 125I Multi-species Kit 
(Cat. No. XL-85K, Linco Research Inc.). The lowest level 
of leptin that can be detected by this assay was 1.0 ng/ml 
when using a 100 μl sample size. And the inter- and intra-
assay variability for leptin RIA were <3.6% and 8.7%, 
respectively.

Measurements of hypothalamic neuropeptide gene 
expression

Total RNA was isolated from the hypothalamus 
by using TRIzol Kit (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s protocol. To remove any 
contaminating DNA, RNA samples were treated with 
DNase I (Promega, USA) at 37°C for 30 min followed by 
another cycle of TRIzol extraction to eliminate residual 
DNase I. An equal amount (3 μg) of total RNA was 
transcribed into first strand cDNA for each sample using 
the M-MLV First Strand Kit (Invitrogen) according to the 
manufacturer’s instructions.

Primers set for β-actin and four hypothalamic genes 
were used for real-time q-PCR (Huang et al., 2013). 
Standard curves were constructed for each gene via serial 
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dilutions of cDNA (1 to 26-fold dilutions). Analysis of 
standard curves between target genes and β-actin showed 
that they had similar amplification efficiency, which 
ensures the validity of the comparative quantity method. 
Real-time q-PCR was completed using the SYBR Green 
I qPCR kit (Invitrogen) in the ABI Prism® 7000 Sequence 
Detection system (Applied Biosystems, Carlsbad CA, 
USA). Real-time qPCR was carried out in 20 μL reaction 
agent comprised of 9.5μL RNase-free ddH2O, 9.0 μL 
Platinum® Quantitative PCR SuperMix-UDG (including 
Rox), 0.5 μL cDNA templates, 0.5 μL 10 μmoL/L forward 
primer, and 0.5 μL 10 μmoL/L reserse primer. Each sample 
was analyzed in triplicate. Thermal cycling conditions 
were: 50°C for 120 s, 95°C for 120 s, 45 cycles of 95°C 
for 15 s, and 60°C for 45 s.

Statistical analysis
Data were analyzed using the software package 

SPSS 15.0. Prior to all statistical analyses, data were 
examined for assumptions of normality and homogeneity 
of variance using Kolmogorov-Smirnov and Levene 
tests, respectively. Body mass, food intake, serum leptin 
levels and hypothalamic neuropeptide genes expressions 
between short photoperiod group and long photoperiod 
group were analyzed using independent-samples T 
test. Pearson-correlation analysis was used to detect the 
relationship between serum leptin levels and body fat mass, 
hypothalamic neuropeptide genes expressions. Results are 
presented as means ± SEM and P < 0.05 was considered to 
be statistically significant. 

RESULTS

Body mass, body fat mass and food intake
Before the experiment, body mass in short photoperiod 

group and long photoperiod group were 39.55±2.59 and 
39.31±1.34g, respectively, which showed no significant 
differences (t1,10=0.09, P > 0.05). On day 28, body mass had 
significant differences between two groups (t1,10=-2.48, P < 
0.05, Fig. 1), which reduced 6.91% in short photoperiod 
group compared with that in long photoperiod group. Body 
fat mass on 28 day showed significant differences between 
two groups (t1,10=-2.76, P < 0.05, Fig. 2), and body fat mass 
in short photoperiod group and long photoperiod group 
were 5.71±0.52g and 7.63±0.46g, respectively. Body fat 
mass in short photoperiod group reduced 25.16% than that 
in long photoperiod group. Before the experiment, food 
intake in short photoperiod group and long photoperiod 
group were 6.40±0.43g and 5.87±0.34g, respectively, 
which showed no significant differences (t1,10=0.956, 
P>0.05). On 28 day, food intake had significant differences 
between two groups (t1,10=2.50, P < 0.01, Fig. 3), which 

reduced 27.33% in short photoperiod group compared 
with that in long photoperiod group.

Fig. 1. Photoperiodic response on body mass in Eothenomys 
miletus. *: significant difference (P<0.05) between the two 
groups.

Fig. 2. Photoperiodic response on body fat mass in 
Eothenomys miletus. *: significant difference (P<0.05) 
between the two groups.

Serum leptin levels and hypothalamic neuropeptide genes 
expressions

Serum leptin levels showed no significant differences 
between two groups on 28 day (t1,10=-1.44, P>0.05), and 
leptin levels in short photoperiod group decreased 13.90% 
than that in long photoperiod group. Serum leptin levels 
were positively correlated with body fat mass(r=0.655, 
P<0.05, Fig. 4). During the acclimation, NPY, AgRP, 
POMC and CART expressions had no significant difference 
between two groups on 28 day (NPY: t1,10=-0.758, P>0.05; 
AgRP:t1,10=-1.499, P>0.05; POMC: t1,10=2.043, P> 0.05; 
CART: t1,10=1.136, P>0.05, Fig. 5). Leptin was negatively 
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correlated with NPY expression (r=-0.604, P<0.05, Fig. 
6a), but had no relationship with AgRP expression (r=-
0.042, P>0.05, Fig. 6b), POMC expression (r=0.295, 
P>0.05, Fig. 6c) and with CART expression (r=0.112, 
P>0.05, Fig. 6d).

Fig. 3. Photoperiodic response on food intake of 
Eothenomys miletus. **: significant difference (P<0.01) 
between the two groups.

Fig. 4. Photoperiodic response on correlation between 
serum leptin levels and body fat mass in Eothenomys 
miletus.

DISCUSSION

Seasonal variations in body mass of small mammals 
was an important adaptation strategy for their survival in 
the field (Gottreich et al., 2000). Some small mammals 
in short photoperiod reduced body mass and increased 
thermogenesis (Geiser et al., 2007), such as Microtus 
pennsylvanicus (Dark and Zucker, 1986) and Peromyscus 

leucopus (Lynch and Wichman, 1981). But for Dicrostonyx 
torquatus, short photoperiod increased body mass and 
reduced thermogenesis (Powel et al., 2002). In the present 
study, short photoperiod decreased body mass in E. miletus, 
decreasing body mass in short photoperiod was associated 
with an increasing of thermogenesis capacity (McNab, 
1983), previous study in E. miletus showed that short 
photoperiod can increase resting metabolic rate and non-
shivering thermogenesis significantly (Zhu et al., 2011), 
reducing body mass was benefit to reduce the total energy 
consumption. Body fat mass was lower significantly in 
short photoperiod, which also may be related with the 
increasing of thermogenesis, E. miletus needed to mobilize 
fat content to maintain body mass homeostasis. 

Fig. 5. Effects of different photoperiods on hypothalamic 
genes expressions in Eothenomys miletus.

Short photoperiod increased food intake significantly, 
which was matching the increase of energy consumption. 
Compared with the results of E. miletus during cold 
acclimation, changes of body mass, body fat mass and food 
intake were lower significantly in different photoperiods 
than that in cold acclimation, which may suggest that E. 
miletus was more sensitivity to temperature than that of 
photoperiod, which was consistent with our previous study 
(Zhu et al., 2014). 

Leptin plays an important role in the regulation of body 
mass in small mammals (Abelenda et al., 2003). Leptin 
levels can reflect the content of adipose tissue (Schneider 
et al., 2000). Current researches indicated that there had a 
positive relationship between serum leptin levels and body 
fat mass in Meriones unguiculatus (Li and Wang, 2005), 
and there had a negative relationship between serum leptin 
levels and body fat mass in Tupaia belangeri (Zhang et 
al., 2012), but for Cricetulus barabensis, there had no
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Fig. 6. Correlation of NPY (A), AgRP (B), POMC (C) and CART (D) with serum leptin level in Eothenomys miletus in different 
photoperiods.

 
 relationship between serum leptin levels and body fat 
mass (Zhao, 2011). Therefore, relationships of leptin lev-
els and body fat mass were more complex (Król et al., 
2006). In the present study, although serum leptin levels 
were lower in short photoperiod group, which reduced 
13.90% in short photoperiod group compared to that in 
long photoperiod group, but there showed no significant 
differences between two groups. Further correlation analy-
sis showed that leptin was positively correlated with body 
fat mass, suggesting that leptin can still be used as a sig-
nal molecule to reflect the content of adipose tissue (Zhao 
and Wang, 2006). Leptin can regulate body mass mainly 
through the regulation of energy intake and energy con-
sumption (Concannon et al., 2001). In the present study, 
food intake increased significantly in short photoperiod 
group, leptin was negative related with food intake, indi-
cated that low concentrations of leptin can promote food 
intake, suggesting that leptin may involve in the regula-

tion of body mass and energy metabolism under differ-
ent photoperiods. Hypothalamic neuropeptide genes were 
essential for the maintenance of body mass and energy 
metabolism, and leptin plays an important role of hypo-
thalamic neuropeptide genes expressions (Boss-Williams 
and Bartness, 1996). Our results showed that NPY and 
AgRP expressions in short photoperiod group were higher 
than that of long photoperiod group, POMC and CART 
expressions in short photoperiod group were lower than 
that in long photoperiod group, but NPY, AgRP, POMC 
and CART expressions had no significant differences be-
tween two groups, indicating that photoperiod is not suf-
ficient to cause hypothalamic neuropeptide genes expres-
sions changes. And from the relationship between leptin 
and hypothalamic neuropeptide genes expressions, leptin 
was only negative correlated with NPY expression, and 
other three genes expressions had no relationship with lep-
tin, suggesting that leptin was involved in the regulation 
of NPY expression, thereby contributing to the increased 
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appetite under short photoperiod condition.

CONCLUSIONS

In conclusion, short photoperiod reduced body mass, 
body fat mass and serum leptin levels, and increased food 
intake. Leptin may regulate on body mass and energy 
metabolism by acting on hypothalamic neuropeptide of 
NPY expression in E. miletus under different photoperiods.
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