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Neuromedin S (NMS), an anorexigenic neuropeptide was first discovered in rat brain. It is a ligand for 
receptor FM4/TGR-1 which is also called as NMU receptor type II (NMU2R). Mainly it is expressed 
in SCN and involved in regulation of food intake and dark light circadian rhythms. In rodents and 
higher primates its stimulatory role in HPG axis is reported. Growth hormone (GH) is released from 
anterior pituitary and directly or indirectly play very important role in regulation of HPG axis. In the 
present study the pathway of stimulatory role of NMS was investigated in the regulation of HPG axis. 
For this purpose, after NMS administration plasma testosterone (T) and growth hormone (GH) levels 
were determined in four normally fed and 48 hours fasted adult male rhesus monkeys. Fifty nmol (50 
nmol) of NMS was injected through a cannula affixed in saphenous vein. Blood samples were collected 
individually 60 minutes before and 120 minutes after NMS administration at 15 minutes intervals. Plasma 
T and GH concentrations were determined by using specific Enzyme Immunoassay (EIA) kits. 48 h 
fasting significantly (P<0.001) decreased plasma T levels but it did not cause any significant (P>0.05) 
change in plasma GH levels compared to normal fed monkeys. NMS injection induced a significant 
increase (P<0.05) in T and GH concentrations compared to saline treated animals suggesting the possible 
involvement of GH in NMS induced secretion of testosterone. In summary our results suggest that NMS is 
a positive modulator of HPG axis and pituitary hormones like GH might be playing an intermediate role.

INTRODUCTION

Neuromedin S (NMS) is a 36-amino acid peptide which 
binds with the G protein-coupled receptor FM4/TGR-

1 also called neuromedin U receptor type-2 (NMU2R) and 
is highly expressed in the suprachiasmatic nucleus (SCN) 
of the hypothalamus (Mori et al., 2005). The expression 
of NMS receptor is restricted almost only to the central 
nervous system having abundant expression in SCN 
and paraventricular nucleus (PVN) (Guan et al., 2001; 
Nakahara et al., 2004). The presence of receptor within 
SCN, suggests its ligand role in regulation of circadian 
rhythms and hypothalamic hormones like corticotropic 
releasing hormone (CRH) and gonadotropic releasing 
hormone (GnRH) secretion (Mori et al., 2005) while its 
PVN presence implies its role in feeding and the regulation 
of hypothalamus pituitary adrenal (HPA) axis. It has been 
demonstrated that NMS has higher expression in the 
hypothalamus (Rucinski et al., 2007), which suggests the
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predominance of NMS in central regulatory processes. 
NMS mRNA has higher expression in the hypothalamus, 
testes and spleen (Mori et al., 2005). The presence of NMS 
mRNA in testes (Fujii et al., 2000), suggests its possible 
role in reproduction. Central administration of NMS in 
female rats stimulate luteinizing hormone (LH) secretion 
(Vigo et al., 2007) and peripheral administration of NMS 
induces T secretion in rhesus monkeys in a dose dependent 
manner which indicates that it may have a very important 
role in regulation of reproductive functions. 

Reproductive functions are vitally controlled by 
hypothalamus pituitary gonadal (HPG) axis. This axis 
regulates secretion of pituitary gonadotropins, follicle 
stimulating hormone (FSH) and LH by pulsatile release of 
hypothalamic decapeptide GnRH. All these hormones play 
a major role in gonadal maturation and functions (Plant, 
2008). Many internal and external factors may affect 
the proper functioning of HPG axis. The most important 
factor is the nutritional status of an individual (Bronson, 
1985; Cameron, 1996; Wade et al., 1996; Wade and Jones, 
2004). The observations of Pirke and colleagues suggested 
the possible role of specific nutrients on reproductive 
function in the human (Pirke et al., 1986). Many studies 
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on rats, cattle and hamsters, have also shown that the 
metabolic deficiencies affect the testicular size and sperm 
production, as caused by other environmental factors such 
as photoperiod and social cues (Lincoln and Short, 1980; 
Walkden-Brown et al., 1994). The exact mechanism that 
how metabolic fuel deficiencies arrest the neural networks 
which regulate the intermittent GnRH discharge is not 
completely understood. Metabolic deficiency suppressed 
GnRH secretion is associated with increased levels of 
gamma-aminobutyric acid (GABA) due to over expression 
of GABA synthesizing enzymes (Leonhardt et al., 1999). 
The study of Mahesh and Brann (2005) showed that 
excitatory amino acids (EAA) stimulate LH secretion. 

In mammals, hormone secretion and needs of the 
organism are precisely balanced in a particular state. 
Mainly from the different hypothalamic nuclei, releasing 
or inhibitory factors define the final concentrations of 
many pituitary hormones in circulatory system (Schibler 
and Sassone-Corsi, 2002). Higher brain sites with an 
integrative system control these nuclei. The afferent inputs 
to these areas of brain may be of hormonal or neural origin. 
The neural networks, controlling hormone release include 
feedback loops in which the released signaling molecule 
directly or indirectly modifies its pattern of secretion 
(Schibler and Sassone-Corsi, 2002).

Hypothalamus controls a variety of homeostatic 
processes such as metabolic control, reproduction, 
thermoregulation, lactation, cardiovascular function, 
feeding, drinking, sleep-wake cycle and hormone 
secretion. Hypothalamus delivers its secretions through 
the hypophyseal portal system to the anterior pituitary 
gland which in turn regulate the secretions of other 
endocrine glands (Everitt and Hokfelt, 1990; Bernardis 
and Bellinger, 1993, 1998).

A complex network of hormonal system is required 
for spermatogenesis and steroidogenesis, which are 
normal testicular functions. Like other glands testes 
are also controlled by secretion of certain hormones. 
These hormones are the primary regulators while the 
local paracrine and autocrine chemicals produced 
by the cellular parts of testes work to establish the 
important microenvironment for sperm development. 
Steroidogenesis, spermatogenesis and testicular functions 
are controlled by the complex interaction of autocrine, 
paracrine and endocrine signals (Heindel and Treinen, 
1989; Spiteri-Grech and Nieschlag, 1993; Gnessi et al., 
1997; Abney, 1999; Hull and Harvey, 2000; Roser, 2001; 
Welt et al., 2002; Huleihel and Lunenfeld, 2004; Petersen 
and Soder, 2006). 

GH belongs to protein family (Niall et al., 1971). 
It is required for pubertal maturation and sexual 
differentiation. It is also involved in gametogenesis, 

gonadal steroidogenesis, and ovulation. During pregnancy 
GH is also needed for fetal nutrition, growth, development 
of mammary gland and lactation. These roles reflect the 
effect of GH on the secretion and action of FSH and LH 
(Chandrashekar and Bartke, 1998), directly and indirectly 
through insulin-like growth factor I production. Moreover, 
production of GH in mammary and gonadal tissues 
reflects paracrine or autocrine actions of extra pituitary 
GH. Experimental studies showed that GH affects gonadal 
differentiation, steroidogenesis, gonadotrophin secretions 
and gametogenesis (Zachmann, 1992; Franks, 1998).

Compelling evidences suggest that GH plays an 
important role in the reproductive process. The presence of 
GH receptors has been documented in the ovary (Mathews 
et al., 1989; Lobie et al., 1990). In male reproductive 
system, GH receptors are found ubiquitously including 
sertoli and leydig cells, vas deferens, seminal vesicles 
and prostate gland (Lobie et al., 1990). GH also plays 
very important role in testicular development and growth. 
GH deficiency in human is associated with abnormally 
small testes. Similarly, pituitary and testicular GH may 
affect testicular function including gametogenesis and 
steroidogenesis (Spiteri-Grech and Nieschlag, 1992).

In the present study it was hypothesized that NMS is 
possibly involved in the regulation of HPG axis by affecting 
the secretion of GH. For this purpose, the effect of NMS 
on GH secretion and its relationship with T secretion was 
observed in normal, fed and 48-h fasted male monkeys.

MATERIALS AND METHODS

Animals and catheterization
Four adult normal male monkeys (Macaca mulatta) 

of age and weight ranging from 6-8 years and 7-10 kg, 
respectively ept in standard colony environment of primate 
facility at Department of Animal Sciences, Quaid-i-Azam 
University Islamabad. During experiment normally fed 
animals were given daily with fresh fruits, boiled potatoes, 
eggs and bread at specific times according to their body 
weights while water was available ad libitum to both fed 
and 48 h fasted monkeys. The normal feeding was carefully 
observed for one month in both fed and fasted groups prior 
to the start of experiment. A cathy cannula (Silver Surgical 
Complex, Karachi, Pakistan; 0.8 mm O.D/22 G×25mm) 
was affixed in the sephnous vein after anesthesizing the 
animals with Ketamine HCl (10 mg/kg BW, im), to bring 
about all the chemical administration and sequential blood 
sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 
mm length; JMS Singapore) was attached with free end of 
the cannula. A single intravenous injection of NMS/saline 
was given after 60 min start of experiment. Five samples 
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were collected in both fed and fasted groups before 
NMS/saline injection and eight samples were collected 
after injection. All the sampling was performed after full 
recovery of animals from sedation. All experiments were 
approved by the Departmental Committee for Care and 
Use of animals at Quaid-i-Azam University Islamabad, 
Pakistan.

Pharmacological reagents
Pharmacological reagents used in the study are 

Heparin (Sinochem Ningbo, China), Ketamine HCl 
(Rotexmedica, Trittau, Germany), Human Neuromedin S 
(Anaspec, USA). All the working solutions were prepared 
in saline solution (0.9% NaCl).

Blood sampling 
Blood sampling (2-3 ml) was done at regular 

intervals of 15 min in both fed and 48 h fasted animals 
using heparinized syringes. An equivalent quantity of 
heparinized (5 IU/ml) saline was injected after each 
sample withdrawal. Samples were collected 60 min before 
and 120 min after NMS administration. The time of NMS 
(50 nmol) administration was considered as 0 min. All 
blood samples were obtained between 1100-1500 h. All 
experiments were performed in a couple of weeks in order 
to reduce the alterations in hormonal levels associated 
with seasonal changes. Samples were centrifuged for 10 
min at 3000 rpm, and then plasma was pipetted out and 
stored at -20˚C until analyzed.

Hormonal analysis
T and GH concentrations were quantitatively 

determined by using EIA kits (Amgenix Inc. USA). The 
minimum limit of detectable T levels was upto 0.05 ng/ml; 
intra-assay and inter-assay coefficients of variation were 
6.4% and 4.4%, respectively and the minimum detectable 
limit for both GH levels was 0.05 ng/ml. Intra-assay and 
inter-assay coefficients of variation were <8%. All the 
procedures of EIA were followed as provided with the kits.

Statistical analysis 
All the data were presented as mean±SEM. T and 

GH concentrations after NMS and saline administration 
were compared by one-way ANOVA followed by post 
hoc Dunnett’s multiple comparisons test. Student’s t test 
was employed to compare mean pre- and post-treatment 
T and GH concentrations, under 48-h fasting and normal 
fed conditions.

Statistical significance was set at P≤0.05. All the 
data were analyzed by using statistical software GraphPad 
Prism version 5.

RESULTS

Basal plasma T and GH concentrations
Basal plasma concentrations of T (ng/ml) and GH (ng/

ml) during 1-h before saline/NMS administration in fed 
and 48-h fasting monkeys are shown in Figure 1. Plasma T 
concentrations significantly (P< 0.001) decreased in 48-h 
fasting monkeys compared to normal fed monkeys but 
it did not cause any significant change (P>0.05) in basal 
plasma GH levels.

Fig. 1. (A) Changes in mean (±SEM) basal plasma T 
concentrations (ng/ml) during 1-h period before NMS/
saline administration in fed and 48-h fasting adult male 
monkeys (B) Overall mean (±SEM) basal plasma T 
concentrations (ng/ml) during 1-h period before NMS/
saline administration in normal fed, and 48-h fasting adult 
male monkeys. ***P<0.001 vs fed (Student’s t test).

Effect of NMS on plasma T and GH secretion
The plasma T and GH concentrations (ng/ml) before 

and after saline/NMS administration in normal fed 
monkeys are given in Figure 2A. At 30 min after NMS 
administration significant (P<0.05) increase in T secretion 
was observed. Maximum levels of T concentrations were 
observed at 60 min of NMS treatment compared to 0 min 
sample (Fig. 2B). GH secretions significantly (P<0.05) 
increased after 45 min of NMS injection compared to 0 min 
sample. Maximum levels of GH concentrations (P<0.001) 
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were observed at 90 min of NMS injection compared to 0 
min sample (Fig. 2B). Comparison between pre- and post-
treatment also showed a significant increase in T (P<0.05) 
and GH (P<0.01) secretion after NMS administration (Fig. 
3).

 

Fig. 2. (A) Changes in mean (±SEM) basal plasma GH 
concentrations (ng/ml) during 1-h period before NMS/
saline administration in fed and 48-h fasting adult male 
monkeys (B) Overall mean (±SEM) basal plasma GH 
concentrations (ng/ml) during 1-h period before NMS/
saline administration in normal fed, and 48-h fasting adult 
male monkeys.  P>0.05 vs fed (Student’s t test).

Effect of NMS on plasma T and GH secretion
The plasma T and GH concentrations (ng/ml) before 

and after saline/NMS administration in 48-h fasting 
monkeys are given in Fig. 4A. At 60 min after NMS 
administration significant (P<0.05) increase in T secretion 
was observed. Maximum levels of T concentrations were 
observed at 75 min of NMS treatment compared to 0 min 
sample (Fig. 4B). NMS treatment in 48-h fasted monkeys 
significantly (P<0.01) increased GH concentrations after 
60 min of injection. Maximum levels of GH concentrations 
(P<0.001) were observed at 90 min of NMS injection 
compared to 0 min sample (Fig. 4B). Comparison between 
pre- and post-treatment also showed a significant increase 
in both T (P<0.05) and GH (P<0.01) levels after NMS 
administration (Fig. 5).

Fig. 3. (A) Mean (±SEM) changes in plasma T levels (ng/
ml) before and after saline/NMS administration (at 0 min) 
in normal fed adult male monkeys. (B) Mean (±SEM) 
changes in plasma GH levels (ng/ml) before and after 
saline/NMS administration (at 0 min) in normal fed adult 
male monkeys. *P<0.05, **P<0.01, ***P<0.001 vs 0 min 
(ANOVA followed by post hoc Dunnett’s test).

DISCUSSION

GH plays very important role in autocrine/paracrine 
and endocrine regulation of reproduction. It is involved 
in the control of growth, differentiation, proliferation, 
apoptosis and the secretory activities of reproductive 
organs. It also regulates the response of reproductive 
structures to GnRH and gonadotropins (Sirotkin, 2005). GH 
and its receptors are present in large number of tissues and 
cells including pituitary, uterus, mammary gland, placenta, 
leydig cells, granulosa cells, theca cells, cumulus cells of 
oocyte and many other reproductive and non-reproductive 
tissues (Hull and Harvey, 2000, 2001; Kaiser et al., 
2001; Marchal et al., 2003). Previously it was observed 
that NMS causes its effects on reproductive axis through 
metabolic hormones like adipokines. It was hypothesized 
that NMS might be playing its stimulatory role in HPG 
axis through stimulation of the GH hormone. To find out 
this relationship the effect of peripheral administration of 
NMS on GH and T secretion was investigated in normal 
fed and 48-h fasting monkeys.
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Fig. 4. (A) Comparison of mean (±SEM) plasma T 
concentrations (ng/ml) in 60 min pre- and 120 min post 
saline/NMS in fed adult male monkeys. (B) Comparison 
of mean (±SEM) plasma GH levels (ng/ml) in 60 min pre- 
and 120 min post saline/NMS in fed adult male monkeys. 
*P<0.05 vs pre-treatment ,**P<0.01 vs pre-treatment 
(Student’s t test).

Fasting suppressed basal plasma T levels (P<0.001) 
suggesting that short term fasting has inhibitory effect 
on HPG axis in monkeys but no significant change was 
observed in case of GH concentrations. The inhibition 
of T was possibly due to suppressed GnRH secretion, as 
it was evident in previous findings that inhibitory effect 
of short term fasting on HPG axis in monkeys is due to 
inhibition of GnRH secretion (Wahab et al., 2008) and not 
by changes in pituitary response to GnRH or changes in 
testicular response to LH (Cameron and Nosbisch, 1991). 
GH plays an important role in regulation of metabolic 
activities during fasting conditions (Norrelund, 2005; 
Moller and Jorgensen, 2009) but there are discrepancies in 
GH release in fasting periods in different animals. Among 
two groups of healthy human adult males, 24-h fasting 
induced a significant rise in GH levels in one group while 
in second group GH levels remained same to the initial 
pre fasting values (Alkén et al., 2008). Similar results 
were also observed in young healthy human females (Beer 
et al., 1989). Several other studies also showed that up 
to 2.5 days fasting did not cause significant change and 

the GH levels remained same in adult human females 
(Bergendahl et al., 1999; Norrelund et al., 2001; Darzy et 
al., 2006; Sakharova et al., 2008). Thissen and colleagues 
found negative effect of fasting on GH secretion in men 
(Thissen et al., 1994). In rats 24-h fasting did not effect 
GH levels but five days fasting caused significant decrease 
in GH secretion (Ohashi et al., 1995). In our study 48-h 
fasting caused no effect (P>0.05) on GH secretion in 
rhesus monkeys. On the basis of these findings it is very 
difficult to understand this differential role of fasting on 
GH secretion but it is more logical to say that species 
differences and periods of fasting employed might have 
contributed in these different responses. 

Fig. 5. (A) Mean (±SEM) changes in plasma T concentrations 
(ng/ml) before and after saline/NMS administration (at 
0 min) in 48-h fasting adult male monkeys. (B) Mean 
(±SEM) changes in plasma GH concentrations (ng/ml) 
before and after saline/NMS administration (at 0 min) 
in 48-h fasting adult male monkeys. *P<0.05, **P<0.01, 
***P<0.001 vs 0 min (ANOVA followed by post hoc 
Dunnett’s test).

In our study single peripheral injection of NMS 
(50 nmol) significantly increased (P<0.05) T secretion 
in both normally fed and 48-h fasting animals. On the 
basis of these results it may be suggested that NMS has 
ability to overcome the fasting suppressed inactivity of 
HPG axis. Our results are in accordance with the findings 
of a previous study where iv administration of NMS 
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significantly induced T secretion in dose dependent manner 
in rhesus monkeys. This increase in T secretion is more 
likely due to increase in LH from pituitary and GnRH from 
hypothalamus. The positive role of NMS on gonadotropin 
release was not unpredicted as NMU, which acts through 
the same receptor, influenced LH secretion in OVX 
female rats when centrally injected (Quan et al., 2003, 
2004). Vigo and his colleagues also found stimulatory 
role of NMS on LH secretion in female rats (Vigo et al., 
2007). In present study increase in T secretion after NMS 
administration might also be due its stimulatory effect on 
LH release. These results suggested that more likely NMS 
is also a potent regulator of male gonadal axis in monkeys. 
The exact mechanism of this stimulatory response of NMS 
on LH secretion is yet not clear. However possibly NMS 
modulates expression of neuropeptides in ARC (Ida et 
al., 2005). ARC is the main site with abundant expression 
of NMU2R (Mori et al., 2005), involved in control of 
reproduction and energy balance. So it may be concluded 
that this stimulatory role of NMS in HPG axis is due to 
activation of ARC pathways. 

Fig. 6. (A) Comparison of mean (±SEM) plasma T levels 
(ng/ml) in 60 min pre- and 120 min post saline/NMS in 
48-h fasting adult male monkeys. (B) Comparison of mean 
(±SEM) plasma GH levels (ng/ml) in 60 min pre- and 120 
min post saline/NMS in 48-h fasting adult male monkeys. 
*P<0.05, **P<0.01 vs pre-treatment (Student’s t test).

Kisspeptin and galanin like peptides, which have abundant 
expression in ARC, are most suitable candidates for this 
intermediatory action (Gottsch et al., 2004; Tena-Sempere, 
2006). NMS also induced LH secretion in fasting female 
rats at diestrus. Similar response was noticed in underfed 
animals with different stimuli e.g. kisspeptin and galanin 
like peptide (Castellano et al., 2005, 2006). These 
observations are clear evidence that NMS has ability to 
counteract the inhibitory effect of metabolic stress on the 
gonadotropic axis and potentiate its role in regulation of 
energy balance and reproduction. The most important 
findings of our study were that in fasting conditions, the T 
response to NMS administration was delayed compared to 
normal fed monkeys. It is suggested that the suppression 
of GnRH release by metabolic fuel deficiency might be 
the result of decrease in NMS receptor signaling to GnRH 
neurons or the neurons afferent to GnRH neurons. Further 
studies are required to understand the exact reason for this 
delayed response.

A significant increase (P<0.01) in GH concentrations 
after NMS administration in both fed and 48-h fasting 
adult male monkeys suggesting that irrespective of the 
metabolic status of animals NMS stimulated GH secretion. 
The possible mechanism involved in the regulation of GH 
by NMS, is through the alpha-melanocyte stimulaying 
hormone (α-MSH) and beta-endorphin (β-END) from 
Pro-opiomelanocortin (POMC) in ARC. Both α-MSH 
and β-END are the products of the POMC gene (Smith 
and Funder, 1988). These POMC products stimulate the 
release of GHRH from hypothalamus. It was shown by 
Dupont and colleagues that 2 μg and higher dose of β-END 
resulted in a significant stimulation of plasma GH release 
from 6 to 10 and 20 to 30-fold respectively (Dupont et al., 
1977). Another study (Bricaire et al., 1973) showed that 
α-MSH induced GH release in 18 among 23 normal males. 
Similarly, a significant rise in GH secretion by α-MSH 
administration in children suffering from hypopituitarism 
was observed (Bernasconi et al., 1975). NMS expression 
at the SCN, PVN within the brain (Mori et al., 2005; Ida 
et al., 2005) may regulate the POMC mRNA expression at 
ARC. NMS icv administration led to the augmentation of 
POMC mRNA levels in the ARC and elevated expression 
of c-Foss in ARC POMC neurons (Mori et al., 2005). 
These outcomes propose the involvement of α-MSH in 
NMS regulated feeding behavior and pituitary hormones 
regulation.

CONCLUSION

In summary, our results suggested that NMS is a 
presumptive regulator of pituitary hormones like GH and 
PRL. So, it is plausible that NMS might play its positive 
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role in HPG regulation through the stimulation of pituitary 
hormones like GH and PRL. Various pathways may 
be considered as suitable candidates for this regulation 
but it is very difficult to confirm the exact pathway of 
NMS action in this regard. Further studies are required 
to confirm the exact mechanism of this regulation. Our 
results suggest that NMS is a modulator of metabolic and 
reproductive axis. It induces T secretion GH secretion in 
both fed and fasting conditions but its effect was delayed 
in fasting monkeys compared to NMS treated normal 
fed monkeys. In fasting conditions, the effect of NMS 
administration showed similar response suggesting the 
possible role of GH in T modulation but due to unknown 
reasons, in normal fed monkeys the rise in GH and T levels 
were quite different after NMS injection. In future further 
studies will confirm the exact role of NMS on GH induced 
reproductive functions. 
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