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The present work aimed to explore the molecular mechanisms and candidate genes associated with fat 
metabolism in Anqingliubai (obese) and Yorkshire (lean) pigs. The transcriptome profiling of backfat 
between Anqingliubai and Yorkshire pigs was carried out by RNA-sequencing technology. The sum of 
clean reads were 288.3 and 365.3 million which was obtained from the RNA sequencing data in the 
Anqingliubai and Yorkshire pigs, respectively. Most reads were located in exonic region, while less 
reads were located in intergenic and intronic regions. There were 2601 upregulated genes, but 284 
downregulated genes in Yorkshire pigs compared with those in Anqingliubai pigs. The top 10 most 
significant Gene Ontology (GO) terms included catalytic activity, binding, cell, cytoplasm, positive 
regulation of multicellular organismal process, biological regulation, cellular process, etc. There were 54 
significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including cytokine-cytokine 
receptor interaction, biosynthesis of unsaturated fatty acids, fatty acid metabolism, regulation of lipolysis 
in adipocytes, glycerolipid metabolism, etc. The results of differentially expressed genes from sequence 
were highly reliable by qRT-PCR confirmation. The present work will help understanding of the different 
mechanisms involved in fat deposition between lean and obese pigs.

INTRODUCTION

Fat deposition in pig, directly affecting production 
efficiency, pork quality, reproductive performance and 

consumers’ choice, is an important economic trait (Liu 
et al., 2015; Ibáñez-Escriche et al., 2016). Adipose is the 
organ for fatty acid synthesis, fat and energy storage, and 
adipocytokine secretion and plays an important role in fat 
deposition and metabolism regulation in vivo of livestock. 
Importantly, adipose tissues also secrete adiponectin, 
leptin, resistin and so on, which are closely associated 
with obesity, diabetes, cardiovascular and other metabolic 
diseases (Koskinen-Kolasa et al., 2016; Takashima et al., 
2016). Fat deposition and distribution are closely related 
to meat yield, backfat thickness, intermuscular fat content, 
and meat quality (such as tenderness, juicy, smell and taste). 

*      Corresponding author: dingyueyun@ahau.edu.cn; 
yinzongjun@ahau.edu.cn
0030-9923/2021/0001-0159 $ 9.00/0
Copyright 2021 Zoological Society of Pakistan

Body fat deposition rate depends on adipocyte 
genesis, differentiation, proliferation, and lipid metabolism 
(Cristancho and Lazar, 2011; De Pergola, 2000). Modern 
molecular biology studies have proven that the biological 
process occurring in adipocytes are regulated by various 
key genes (Xing et al., 2015; Wang et al., 2015; Kogelman 
et al., 2014). In particular, the adipocyte-regulated genes 
are an interactive and mutually restricted equilibrium 
system. Therefore, the key genes affecting fat deposition 
not only provide a theoretical basis for improving pig 
meat quality, but also provide an abundant gene source for 
transgenic breeding of meat quality traits.

RNA sequencing (a transcriptome sequencing 
technique) can measure a large number of mRNAs, and 
the entire gene-wide transcriptome map was obtained 
by comparing these sequences with reference genomes 
(Wang et al., 2009; Metzker, 2010; Shen et al., 2016). 
Recently, RNA sequencing technology has been widely 
used in a variety of domestic animals at the transcriptome 
level and has been proven to be one of the most effective 
methods for the large-scale study of transcriptome (Lim 
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et al., 2017; Li et al., 2016). Anqingliubai pig (a famous 
Chinese local lard-pig breed), has higher body fat rate and 
meat quality (Zhang et al., 2015). While, the Yorkshire pig 
(a European lean-type pig) has high lean meat percentage 
and growth rates (Yang et al., 2014). There were significant 
differences in fat metabolism between Anqingliubai and 
Yorkshire pigs. However, few studies have focused on the 
relationship of the adipose tissue transcriptome between 
both breeds. In the present work, the transcriptome analysis 
in the backfat of the two breeds was carried out by RNA 
sequencing technique. The results of sequencing, sequence 
alignment, transcription prediction and differential gene 
screening will provide a molecular basis for fat metabolism 
in swine.

MATERIALS AND METHODS

Animals and backfat sample
The animal experiment was carried out based on 

the guidelines for the care and use of experimental 
animals of the Ministry of Science and Technology of 
the People’s Republic of China (No. 2006-398) and 
approved by Animal Care Advisory Committee of Anhui 
Agricultural University. Three purebred castrated male 
Anqingliubai pigs and three purebred castrated male 
Yorkshire pigs (about 100 kg) were selected from farm of 
Anhui Agricultural University. After slaughter, the backfat 
samples were quickly put into liquid nitrogen and stored 
at - 70 ˚C refrigerator.

 
Total RNA extraction, library preparation and sequencing

The total RNA of the backfat was extracted by Qiagen 
RNA Isolation Kit (Germany) and detected by Nanodrop 
2000 spectrophotometer (Thermo Scientific, USA) and 
Bioanalyzer 2100 system (Agilent Technologies, USA). 
The 6 libraries were constructed by NEB RNA Library 
Prep Kit (UK) following manufacturer’s instructions. The 
cDNA libraries were amplified by PCR and then sequenced 
on Illumina Hiseq3000 platform.

Sequence data analysis
The clean reads obtained by removing low quality date 

were used to analyze. The clean reads were mapped to pig 
reference genome (Sscrofa10.2). The mRNA expression 
level was calculated by RPKM. The mRNA with |log2 
Fold Change|>1 and q value < 0.01 was considered as 
differentially expressed gene (DEG).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis

The differentially expressed genes were submitted to 
the GO and KEGG databases for enrichment analysis. In all 

tests, the P-value was determined using Fisher Exact Test, 
and P value < 0.05 was considered as significant pathway.

The mRNA validation by quantitative RT-PCR (qRT-PCR)
The DEGs from backfat RNA of the Anqingliubai 

(n=6) group and Yorkshire (n=6) group were checked. The 
qRT-PCR was used to measure the mRNA expression level 
of 8 randomly selected DEGs by TaKaRa SYBR Premix 
Taq (Japan) with PCR primers (Table I). The thermal 
cycling program was 95 ̊ C for 300 s, and 40 cycles of 95 °C 
for 5 s and 60 ˚C for 30 s. The β-actin gene was selected as 
reference gene. The mRNA expression level was calculated 
using 2-ΔΔCT method (Livak and Schmittgen, 2001).

Table I. The primers used in this study.

Gene Primer senquence
TNMD Forward: 5'-AACCTGATTGGCATCTACC-3'

Reverse: 5'-GATGACACGACAGATGACTCG-3'
BCO2 Forward: 5'-GCCCGTTGTCCTATTCTTCA-3'

Reverse: 5'-TCTCCAAACCGTCAGTGTCTT-3'
ACAN Forward: 5'-AACTTAGCGGTGCCCATTC-3'

Reverse: 5'-ACCCTCCACGAACTCAGAAG-3'
DKK3 Forward: 5'-CGTTCTGCTCACTCTGTGTTG-3'

Reverse: 5'-AAATCCTGCTCTGGTCTTCA-3'
CYP3A29 Forward: 5'-CCAGAGATGGGACCGTAAGT-3'

Reverse: 5'-TCCACAAAGACCCTGAGAAG-3'
AARD Forward: 5'-TGGAAACGGACAGTGGAA-3'

Reverse: 5'-CCCAAGACAAGGAAGAGCAG-3'
FRRS1 Forward: 5'-AATCCAGCCAGAGATGAAGAAG -3'

Reverse: 5'-CTGAAGTCGGTGGTGAGTCTA-3'
FKBP5 Forward: 5'-GTGGAGAGACTGAGCCAACA-3'

Reverse: 5'-CAACTGAGGGCAAGAAGAAACT-3'

Statistical analysis
Experiment data was subjected to statistical analysis 

by SPSS 18.0 software. Student’s t-test was performed to 
determine the statistical differences between Anqingliubai 
and Yorkshire pigs. P < 0.05 was regarded as significant 
difference.

RESULTS AND DISCUSSION

Overview of sequencing data
As shown in the Table II, the sum of clean reads were 

288.3 and 365.3 million which were obtained from the 
RNA sequencing data in the Anqingliubai and Yorkshire 
pigs, respectively. Most reads were located in exonic region 
(66.55% - 81.33%), while less reads were located in intergenic 
(4.38% - 13.53%) and intronic (11.51% - 24.35%) regions. 
These results suggested that these reads were available to 
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Table II. Summary of sequencing data.

Sample Yorkshire Anqingliubai
1 2 3 1 2 3

Clean Reads 117,307,576 125,999,096 121,966,536 93,914,658 100,543,632 93,820,672
Exonic, % 67.45% 66.55% 79.46% 70.63% 81.33% 78.46%
Intergenic, % 11.64% 13.53% 9.03% 5.02% 4.38% 9.81%
Intronic, % 20.91 19.92% 11.51% 24.35% 14.29% 11.73%

1Anqingliubai1, Anqingliubai2, Anqingliubai3, Yorkshire1, Yorkshire2, and Yorkshire3 are replicate from the Anqingliubai and Yorkshire breeds.

Table III. Results of qPCR validation.

Gene RNA-Seq results
log2 (Fold change)

qRT-PCR results
log2 (Fold change)

P value Confirmed results of sequence

TNMD 5.57 1.31 0.027 Yes
BCO2 2.15 1.32 <0.01 Yes
ACAN 3.58 0.76 0.041 Yes
DKK3 1.85 0.70 0.028 Yes
CYP3A29 -2.29 -0.91 0.015 Yes
AARD -2.15 0.21 0.585 No
FRRS1L -3.11 -1.12 0.021 Yes
FKBP5 -1.69 -0.91 0.023 Yes

Student’s t-test was performed to detect the differences between Anqingliubai and Yorkshire pigs, and P < 0.05 was considered as significant differences. (n=6).

compare the transcriptomes from backfat of Anqingliubai 
and Yorkshire pigs. The data were submitted to NCBI SRA 
(SRP127699).

Fig. 1. Volcano plot displaying of differentially expressed 
genes between Anqingliubai and Yorkshire pigs. The 
red points: the upregulated genes; The blue points: the 
downregulated genes; The gray points: the non-significant 
differentially genes. 

DEGs between Anqingliubai and Yorkshire pigs
A total of 31694 mRNAs were obtained in the present 

study. A total of 2885 genes were differentially expressed 
between Anqingliubai and Yorkshire pigs (Supplementary 
Table I). There were 2601 upregulated genes, but 284 
downregulated genes in Yorkshire pigs compared with 
those in Anqingliubai pigs. (Supplementary Table I and 
Fig. 1).

Pig fat deposition is closely related to the growth 
performance, pork quality, reproductive traits and disease 
resistance, all of which seriously affect pig production 
efficiency. Compared with other model animals, pig is an 
ideal human model because of their similar physiological 
conditions, fat deposition, body size, feeding patterns, 
etc (Lunney, 2007; Roura et al., 2016). Anqingliubai 
and Yorkshire pigs are belonged to lard and lean types, 
respectively (Zhang et al., 2015; Yang et al., 2014). Backfat 
thickness is an important parameter used to measure fat 
deposition (Wood et al., 2008). 

Many reports have demonstrated that there is breed-
specific gene expression among different breeds (Wang et 
al., 2015; Kojima et al., 2018). The present work found 
a series of differentially expressed genes such as ACACA 
(acetyl-coenzyme A carboxylase), LEPR (leptin receptor), 
LEP (leptin), SCD (stearoyl-CoA desaturase), ACOX1 
(acyl-CoA oxidase 1), etc. involved in important fat 
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deposition. ACACA catalyzes the conversion of acetyl 
coenzyme A to malonyl coenzyme A, which is the key 
rate-limiting enzyme in the de novo fatty acid synthesis 
(Xing et al., 2015). LEPR and LEP negatively regulate 
body weight by reducing feed intake and increasing 
oxidation of fatty acids and glucose (Georgescu et al., 
2014). SCD, the rate-limiting enzyme of unsaturated 
fatty acids, regulates the accumulation and storage 
of glycerol in the liver (Dobrzyn et al., 2010). The 
differentially expressed genes reported here are involved 
in various aspects of de novo fatty acid synthesis 
including its direct and indirect regulation.

 
GO enrichment analysis

GO which can be divided into three major categories 
(Molecular Function, Cellular Component and Biological 
Process) are widely used in transcriptional data analysis 
of pigs (Yu et al., 2010). There were 640 significant 
enrichment items in GO enticement analysis, including 47 
significant enrichment items related to cell components, 
79 significant enrichment items related to molecular 
function, and 514 significant enrichment items related to 
biological processes (Supplementary Table II, III and IV). 
As shown in the Figure 2, the top 10 most significant GO 
terms included catalytic activity, binding, cell, cytoplasm, 
positive regulation of multicellular organismal process, 
biological regulation, cellular process, etc. Results shown 

in Supplementary Table II, III and IV suggested that the 
differentially expressed genes involved in catalytic activity, 
oxidoreductase activity, positive regulation of cellular 
process, regulation of metabolic process, and transition 
metal ion binding could regulate the lipid metabolism 
(Corominas et al., 2013). It can be inferred that DEGs 
labelled with molecular function, cellular component and 
biological process play an important role in the different 
lipid metabolism between Anqingliubai and Yorkshire 
breeds.

KEGG pathway analysis
KEGG database includes the function of genes and 

their interaction network (Kanehisa et al., 2015). The 
analysis of KEGG pathway is contributed to further 
understand the biological function of genes. In the 
present work, there were 54 significant KEGG pathways 
(Supplementary Table V). Figure 3 showed the top 30 
significant KEGG pathways.

Generally, the fat deposition ability of lard pig is 
stronger than that of lean pig (Furman et al., 2010). In 
the KEGG pathway analysis, some pathways including 
cytokine-cytokine receptor interaction, biosynthesis of 
unsaturated fatty acids, fatty acid metabolism, regulation 
of lipolysis in adipocytes, glycerolipid metabolism, and so 
on were closely related to lipid metabolism (Kanehisa et 
al., 2015; Jensen et al., 1989). Many DEGs (LEPR, LEP, 
TNFSF4, ACOX1, PECR; SCD5, SCD, PTPLA, ACSL3,

Fig. 2. The top 10 most significantly enriched GO terms from differentially expressed genes. 
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Fig. 3. The top 30 significantly KEGG pathways from differentially expressed genes.

MCAT, ACADSB, ACACA, LPIN1) significantly enrich 
above signaling pathways (Xing et al., 2015; Georgescu 
et al., 2014; Dobrzyn et al., 2010). These results suggested 
that genes responsible for lipid metabolism in the backfat 
significantly differ between Anqingliubai and Yorkshire 
pigs. Further studies should focus on the functional deter-
mination of differentially expressed genes to identify key 
candidate which influence the fat traits in swine.

The qRT-PCR confirmation
 Eight genes among the DEGs were selected for qRT-

PCR confirmation from bcakfat RNA of Anqingliub and 
Yorkshire pigs. As shown in Table III, the TNMED, BCO2, 
ACAN and DKK3 genes were upregulated (P<0.05), 
while CYP3A29, FRRS1L, and FKBP5 genes were 
downregulated (P<0.05) in the Yorkshire pigs compared 
with those in the Anqingliubai pigs. However, the mRNA 
expression of AARD was not significantly different 
between both breeds. Consequently, the results of DEGs 
from sequence were statistically verified for 87.5% of the 
detected genes by qRT-PCR. These results suggested that 
the gene expression in the RNA-seq was highly reliable.

 
CONCLUSIONS

The present study represented the mRNA profiles 
in the backfat between Anqingliubai and Yorkshire pigs 
by employing RNA-seq technology. Among DEGs, 

2601 genes were upregulated, while 284 genes were 
downregulated in the Yorkshire pigs compared with those 
in the Anqingliubai pigs. There were many DEGs including 
ACACA, LEPR, SCD, ACOX1, etc. that were relevant to 
the fat metabolism in the swine. Identification of the DEGs 
in the present work will contribute to the understanding of 
the different mechanisms involved fat deposition between 
lean and obese pigs.
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