
Bioinformatics Analysis Identified the Key Genes 
of Aspirin and Redox Damaged Yeast Cells
Hui-Ying Chen1,2*, Ping-Chuan Yin1,2, Ya-Nan Lu1,2, Hai-Yun Li1,2* and Yang Shan3

1College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 
541006, People’s Republic of China
2Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional 
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 
Guilin, 541006, China
3Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural 
Sciences, Changsha 410125, China

Article Information
Received 30 April 2019
Revised 30 July 2019
Accepted 14 March 2020
Available online 18 May 2020

Authors’ Contribution
HYC and PCY conceived and 
designed the experiments. PCY 
analyzed the data. HYC contributed 
materials/analysis tools. PCY wrote 
the manuscript. YNL, HYL and YS 
revised the manuscript.

Key words
Aspirin, Saccharomyces cerevisiae, 
Bioinformatics analysis, Functional 
enrichment analysis, Protein-protein 
interaction (PPI) network

Aspirin is a widely used anti-inflammatory and antithrombotic drug that exhibits chemopreventive 
anti-tumor properties. Aspirin is considered to be partially mediated by the induction of apoptosis in 
cells. However, the underlying molecular mechanisms of aspirin in the prevention of cancer are yet to 
be fully elucidated. In the current study, the GSE115660 microarray dataset was downloaded from the 
Gene Expression Omnibus database to identify key genes in aspirin-damaged yeast cells following redox 
injury. Differentially expressed genes (DEGs) were subsequently identified and functionally enriched for 
analysis. Additionally, a protein-protein interaction network (PPI) was constructed and block analysis 
was performed using STRING and Cytoscape databases. A total of 248 genes were identified, of which 84 
were downregulated and 164 were upregulated. Functional and pathway enrichment analyses indicated 
that upregulated genes were significantly involved in pyrimidine metabolism, glyoxylic acid metabolism 
and dicarboxylic acid metabolism. Downregulated genes were primarily implicated in secondary 
metabolite biosynthesis, carbon metabolism and antibiotic effects. The results revealed that the substance 
exhibited abundant biosynthesis and glycolysis/gluconeogenesis. Subsequently, the following top 10 hub 
genes were identified to the PPI network: Guanine nucleotide-binding protein subunit β, ribosomal 60S 
subunit protein (RPL) 8A, RPL9A, RPL6B, ribosomal 40S subunit protein (RPS) 9B, RPL31B, RPL27B, 
RPS14B, RPL22B and RPL22A. In conclusion, the DEGs and Hub genes identified in the present study 
may further elucidate the molecular mechanisms of aspirin applied to redox-damaged yeast cells and may 
identify potential future biomarkers.

INTRODUCTION

Acetylsalicylic acid (aspirin) is an anti-inflammatory, 
cardio protective and antithrombotic drug, which has 

been recently identified to exhibit chemo preventative and 
anti-tumor properties. These are not only due to the anti-
inflammatory and anti-thrombocytic effects of aspirin, 
but also due to their tendency to cause programmed 
cell death (Chan et al., 2012; Janke et al., 2004) in 
cancer cells. Aspirin induces esophageal cancer cell 
apoptosis by inhibiting the downstream regulation of 
cyclooxygenase-2 via nuclear factor-κB (Liu et al., 2005). 
Additionally, TGF-β1 mediates the effect of aspirin on 
colon cancer cell proliferation and apoptosis (Wang et 
al., 2018b). Aspirin also induces apoptosis and inhibits 
the proliferation of breast cancer cells (Wu et al., 2017).
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The overall mechanism of aspirin-induced malignant cell 
death is not fully understood and numerous studies have 
constructed several experimental models using eukaryotic 
cells for further elucidation. One of these models utilizes 
Saccharomyces cerevisiae, which has been previously 
used to study apoptosis in living organisms as cells exhibit 
various essential eukaryotic processes, including apoptosis 
brand characteristics (Eisenberg et al., 2007). Yeast is also 
a particularly important tool for the assessment of cell 
death associated with mitochondria.

Over the past few decades, microarray and 
bioinformatics analyses have been widely used to detect 
genetic changes on a genome-wide scale, facilitating the 
identification of differentially expressed genes (DEGs) 
in redox-affected yeast cells. In the present study, 
correlation analysis was performed between the control 
and experimental groups. Furthermore, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses, along with PPI 
network analysis were utilized to identify the key genes of 
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aspirin-damaged yeast cells to determine the mechanisms 
underlying cell death.

MATERIALS AND METHODS

Gene expression profile data
The Gene Expression Omnibus (GEO; http://www.

ncbi.nlm.nih.gov/geo/) (Edgar et al., 2002) database 
from the National Center for Biotechnology Information 
stores curated gene expression datasets, original series 
and platform records. The current study downloaded 
the GSE115660 gene expression dataset (Farrugia et 
al., 2019) from GEO (Affymetrix GPL2529 platform; 
Affymetrix Yeast Genome 2.0 Array). Probes were 
converted to the corresponding gene symbol based on 
the annotation information provided by the platform. The 
GSE115660 dataset contained 6 processed samples and 6 
normal samples. Subsequently, the differentially expressed 
genes (DEGs) of the overlap region in the sample were 
determined using the online tool Venny 2.1.0 (http://
bioinfogp.cnb.csic.es/tools/venny/index.html). A heat map 
of DEGs was constructed using TBtools 0.665 (https://
github.com/CJ-Chen/TBtools).

Screening of DEGs
DEGs were screened using the dialog network tool, 

GEO2R (www.ncbi.nlm.nih.gov/geo/geo2r). This allowed 
for the identification of DGEs in experimental conditions 
by comparing >2 datasets of the GEO series. Within the 
GEO2R platform, samples were grouped and differentially 
analyzed for grouped data. The genes with significant 
differences were selected according to an automated design. 
The P-value and Benjamini and Hochberg false discovery 
rate was used for the identification of statistically significant 
genes and false positives, respectively. Genes with one or 
more probe sets and probe sets without gene symbols were 
excluded. The screening conditions were as follows: Gene 
differences of 2 times or more were considered statistically 
significant (Log2 Fold Change>1 and P-<0.01).

DEG GO and KEGG pathway enrichment analyses 
DAVID (http://david.ncifcrf.gov, version6.8) (Huang 

et al., 2007; Jiao et al., 2012) is a bioinformatics database that 
integrates biological data with analytical tools to provide 
comprehensive bio-functional annotations for large-scale 
gene or protein lists to extract biological information. GO 
(Ashburner et al., 2000) is an important bioinformatics 
tool used for parsing genes and determining the biological 
processes they are involved in. KEGG (Kanehisa, 2002) is 
a database that is used to understand advanced functions 
and biological systems from large-scale molecular data 
generated by high performance experimental techniques. 

The up and downregulated genes identified in the current 
study were uploaded to the online bioinformatics analysis 
tool, DAVID, to identify the most significantly enriched 
biological classifications and annotations. P<0.05 was 
considered to indicate a statistically significant difference.

Protein-protein interaction (PPI) network analysis
STRING (http://string-db.org, version 11.0) 

(Szklarczyk et al., 2019) is a commonly used PPI database, 
which includes information regarding direct interactions 
between proteins, as well as correlations of indirect protein 
functions. Each point in the interaction network represents 
a protein and each edge represents an interaction between 
two linked proteins. The DEGs obtained during the 
present study were mapped on the STRING database to 
determine the interactions between proteins encoded by 
the aforementioned genes and to further understand the 
specific functions of each DEG. For greater biological 
significance, only the nodes with an interaction score 
>0.4 were reserved. Due to the complexity of the PPI 
network, Cytoscape was used to analyze interactions. 
Cytoscape (Version 3.7.1) (Politano et al., 2016) is a visual 
bioinformatics software that integrates biological networks 
with various molecular states, including gene expression 
and genotype. The MCODE (version 1.5.1) (Bandettini et 
al., 2012) plugin was used to cluster functional blocks in a 
large gene (protein) network. The current study therefore 
used Cytoscape to draw a PPI network and MCODE to 
identify the most significant modules of the PPI network. 
Am MCODE score >10 was used as the screening 
criterion. Other parameters were selected as the default 
values. Subsequently, functional enrichment analysis of 
the genes in the module was performed using DAVID. 
The key targets and subnets of complex networks were 
explored using the CytoHubba (Chin et al., 2014) (version 
0.1) plugin. Among them, MCC is a newly proposed 
method. Additionally, the prediction of key proteins is 
more effective in yeast PPI networks compared with other 
methods. Thus, the current study utilized the MCC method 
to select the top 10 nodes as hub genes and the remaining 
parameters were selected as default values.

RESULTS

Identification of DEGs 
Following the standardization of GSE115660, DEG 

analysis was performed. The results revealed a total of 
248 DEGs, of which 164 were upregulated and 84 were 
downregulated, as presented in the Venn diagram (Santos 
et al., 2018) (Fig. 1). The DEG expression heat map of the 
GSE115660 dataset constructed using TBtools (Chen et al., 
2018a) is presented in Figure 2. The 248 DEGs were used 
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for further analysis.

Fig. 1. Venn diagram of 248 DEGs from treated and normal.

DEG functional and pathway enrichment analyses
DEGs were classified via GO analysis and the results 

elucidated gene function. DEG KEGG analysis determined 
the differential pathways of samples and identified the 
changes in certain cellular pathways. The DEGs of the 
current study were uploaded to DAVID for pathway 
enrichment analysis and functional annotation. The results 
revealed that the upregulated DEGs were significantly 
enriched in the propionate catabolism process, the 2-methyl 
citrate cycle, the UMP biosynthesis process, the positive 
regulation of spindle pole separation, the G2/M conversion 
of the mitotic cell cycle and the pyrimidine nucleotide 
biosynthesis process. In addition, downregulated DEGs 
were significantly enriched in the mitochondrial redox 
process, cytoplasmic translation and pentose phosphate 
shunt. In terms of cell components, upregulated DEGs 
were significantly enriched in the plasma membrane and 
actin. However, downregulated DEGs were enriched in cell 
walls, ribosomes, fungal vacuoles and within the cytoplasm. 
For molecular function, upregulated DEGs enhanced 
transferase activity and the transfer of an acyl group to 
an alkyl acyl group, releasing two ions during the transfer 
process and binding two sulfur clusters. Downregulated 
DEGs significantly enhanced oxidoreductase activity and 
transporter activity. KEGG pathway analysis revealed that 
upregulated DEGs were mainly enriched in pyrimidine 
metabolism, glyoxylic acid metabolism and dicarboxylic 
acid metabolism. The downregulated DEGs were primarily 
enriched in the biosynthesis of secondary metabolites, carbon 
metabolism, the biosynthesis of antibiotics and glycolysis/
gluconeogenesis. The enrichment analyses (Tables I and 
II) of gene functions performed in the present determined 
the biological pathways that serve a key role in various 
biological processes, providing further understanding of the 
basic molecular mechanisms involved.

Fig. 2. Heat map of the top 100 differentially expressed 
genes of GSE115660.
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Table I. Result of GO and KEGG enrichment analysis of up-regulated DEGs.

Term Description Count % P-Value
BP
GO:0019629 Propionate catabolic process, 2-methylcitrate cycle 3 2.0 1.37E-03
GO:0044205 'De novo' UMP biosynthetic process 3 2.0 6.55E-03
GO:0010696 Positive regulation of spindle pole body separation 3 2.0 9.05E-03
GO:0000086 G2/M transition of mitotic cell cycle 4 2.6 9.83E-03
GO:0006207 'De novo' pyrimidine nucleobase biosynthetic process 3 2.0 1.51E-02
GO:0006221 Pyrimidine nucleotide biosynthetic process 3 2.0 1.86E-02
CC
GO:0005887 Integral component of plasma membrane 8 5.3 2.13E-02
GO:0005886 Plasma membrane 19 12.5 2.36E-02
GO:0030479 Actin cortical patch 5 3.3 4.66E-02
MF
GO:0046912 Transferase activity, transferring acyl groups, acyl groups converted into 

alkyl on transfer
3 2.0 1.39E-02

GO:0051537 2 ion, 2 sulfur cluster binding 3 2.0 4.21E-02
KEGG
sce00630 Glyoxylate and dicarboxylate metabolism 4 2.6 1.03E-02
sce00240 Pyrimidine metabolism 5 3.3 3.42E-02
sce01200 Carbon metabolism 6 3.9 4.94E-02

Construction of PPI network and module analysis
Protein interaction networks are crucial for 

understanding the reaction mechanisms of biological 
signals and energy metabolism under specific 
physiological conditions, including diseases, and for 
understanding the functional links between proteins. 
STRING was utilized to build the DEG PPI network. 
Cytoscape was then utilized to detect the most significant 
modules. Functional enrichment analysis of the genes 
involved in these modules was performed using DAVID. 
The DEG PPI network is presented in Figure 3. The 
network contained 374 nodes and 1,218 edges. The most 
important modules obtained from the PPI are presented in 
Figure 4. Table III summarizes the functional enrichment 
analysis of the most important modules obtained using 
MCODE. The top 10 central nodes with higher degrees 
selected from the PPI network are presented in Figure 
5. The results revealed that the 10 hub genes obtained 
using CytoHubba were identical to module 2 of MCODE, 
confirming the credibility of identified hub genes. The 
following hub genes were identified: Guanine nucleotide-
binding protein subunit β (ASC1), ribosomal 60S subunit 
protein (RPL) 8A, RPL9A, RPL6B, ribosomal 40S 
subunit protein (RPS) S9B, RPL31B, RPL27B, RPS14B, 
RPL22B and RPL22A.

Fig. 3. Protein-protein interaction network diagram. Red 
indicates the up-regulated gene and green indicates the 
down-regulated gene.
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Table II. Result of GO and KEGG enrichment analysis 
of down-regulated DEGs.

Term Description Count % P-Value
BP
GO:0055114 Oxidation-reduction 

process
13 15.7 4.97E-04

GO:0002181 Ccytoplasmic translation 8 9.6 3.27E-03
GO:0006098 Pentose-phosphate shunt 3 3.6 1.24E-02
GO:0006412 Translation 9 10.8 2.84E-02
CC
GO:0022625 Cytosolic large ribosomal 

subunit
7 8.4 1.98E-03

GO:0000324 Fungal-type vacuole 11 13.3 2.26E-03
GO:0009277 Fungal-type cell wall 7 8.4 2.61E-03
GO:0031225 Anchored component of 

membrane
5 6.0 8.06E-03

GO:0005618 Cell wall 5 6.0 9.44E-03
GO:0005840 Ribosome 10 12.0 1.08E-02
GO:0005622 Intracellular 8 9.6 1.18E-02
GO:0005737 Cytoplasm 39 47.0 1.84E-02
GO:0030529 Intracellular ribonucleop-

rotein complex
9 10.8 3.46E-02

GO:0005576 Extracellular region 5 6.0 4.56E-02
MF
GO:0016491 Oxidoreductase activity 13 15.7 1.47E-04
GO:0003735 Structural constituent of 

ribosome
9 10.8 1.52E-02

GO:0005199 Structural constituent of 
cell wall

4 4.8 1.66E-02

GO:0005215 Transporter activity 5 6.0 1.81E-02
GO:0008757 S-adenosylmethio-

nine-dependent methyl-
transferase activity

3 3.6 2.84E-02

KEGG
sce03010 Ribosome 9 10.8 1.79E-03
sce01110 Biosynthesis of second-

ary metabolites
11 13.3 3.24E-03

sce01130 Biosynthesis of antibi-
otics

9 10.8 5.35E-03

sce00010 Glycolysis / Gluconeo-
genesis

4 4.8 3.98E-02

DISCUSSION

By analyzing microarray data, the present study 
identified the DEGs of aspirin-injured yeast cells, of 
which 164 were upregulated and 84 were downregulated. 

A series of bioinformatics analyses, consisting of GO 
terminology analysis, KEGG pathway analysis and PPI 
network analysis, were performed to screen hub genes 
and the pathways closely associated with aspirin-infected 
yeast cells.

Table III. Functional and pathway enrichment analysis 
of the genes in the most significant modules.

Term Description Count FDR
Module 1
GO:0006098 Pentose-phosphate shunt 3 2.42E-04
GO:0009051 Pentose-phosphate shunt, 

oxidative branch
2 8.07E-03

GO:0055114 Oxidation-reduction process 4 1.53E-02
GO:0005737 Cytoplasm 10 1.66E-03
GO:0016491 Oxidoreductase activity 4 6.18E-03
sce01110 Biosynthesis of secondary 

metabolites
5 3.27E-04

sce01200 Carbon metabolism 4 5.34E-04
sce00030 Pentose phosphate pathway 3 9.36E-04
sce01130 Biosynthesis of antibiotics 4 3.49E-03
Module 2
GO:0002181 Cytoplasmic translation 8 7.91E-10
GO:0006412 Translation 9 9.05E-10
GO:0042254 Ribosome biogenesis 3 0.038916
GO:0005840 Ribosome 9 3.81E-10
GO:0030529 Intracellular ribonucleoprotein 

complex
9 4.70E-10

GO:0022625 Cytosolic large ribosomal 
subunit

7 2.74E-09

GO:0005622 Intracellular 7 1.24E-07
GO:0005737 Cytoplasm 10 2.59E-04
GO:0022627 Cytosolic small ribosomal 

subunit
3 0.005067

GO:0003735 Structural constituent of 
ribosome

9 6.97E-10

GO:0003723 RNA binding 5 0.007587
sce03010 Ribosome 9 1.93E-09

The aim of the present study was to determine the 
mechanism of aspirin-induced apoptosis at the molecular 
level in redox-damaged Saccharomyces cerevisiae cells. 
The current study identified the DEGs of MnSOD-deficient 
Saccharomyces cerevisiae cells exposed to aspirin-induced 
redox damage and wild-type yeast cells. Aspirin alters 
the gene expression profile of redox-damaged MnSOD 
deficiency, resulting in a larger and more significant gene 
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expression profile, which is significantly different from 
wild-type yeast cells (Holley et al., 2013; Oberley and 
Buettner, 1979).

Fig. 4. The most significant modules obtained from the PPI 
network. Module 1 and module 2 are the most important 
modules in the PPI network identified by the MCODE 
score > 10.

Fig. 5. Functional roles of 10 hub genes with MCC ≥10. 
The darker the color, the higher the score.

The extent to which aspirin affects mutant and wild-
type gene expression profiles can be explained by the lack 
of the mitochondrial antioxidant enzyme, MnSOD, in 
mutant yeast cells, resulting in different gene expression 
profiles (Qin et al., 2013). Since genotypes have been 
reduced, certain adaptations in the mutated transcripts of 
these genotypes involve the development of sensitivity 
to aspirin in defective mutant yeast cells. Additionally, 
aspirin further exacerbates their downregulation.

The functional annotation (GO) and pathway 
enrichment (KEGG) analyses of the present study indicated 
that downregulated DEGs were primarily enriched in 
various ribosome-associated components, including “cell 
ribonucleoprotein complex”, “cytoplasmic ribosomal 
subunit” and “cellular ribonucleoprotein complex”. 

KEGG pathway analysis determined that the DEGs were 
mainly enriched in secondary biosynthesis, biosynthesis 
of metabolites and antibiotics. The results indicated that 
aspirin inhibited ribosome synthesis, limiting the ability of 
cells to produce protein (Chen et al., 2018b). 

The role of ribosomes in the regulation of gene 
expression is complex and changes in protein components 
in response to changes in the growth environment in vivo 
(Morris, 2008). The top 10 proteins of the PPI network 
constructed in the present study were involved in ribosome 
regulation and were all downregulated. ASC1 triggers a 
series of reactions to stop and prevent ribosome translation 
(Wang et al., 2018a). The downregulation of RPS14B 
affects ribosome assembly (Fewell and Woolford, 1999) 
and RPS9B inhibits ribosome translation (Plocik and 
Guthrie, 2012). RPL22A and RPL22B (Kim and Strich, 
2016) affects the fate of yeast cells, and the reduction of 
RPL22 inhibits pseudohyphal growth, resulting in false 
defects of meiotic operation. Low expressions of RPL9A 
and RPL8A inhibit protein expression in Saccharomyces 
cerevisiae (Lee and Stevens, 2016). RPL27B affects the 
assembly of the ribosomal gene protein regulatory elements 
(Kasahara et al., 2007). In addition, low expressions of 
RPL31B (Enyenihi and Saunders, 2003; Peisker et al., 
2008; Winzeler et al., 1999) affects ribosome function and 
may be involved in the normal function of the molecular 
chaperone complex. The downregulation of RPL6B 
(Moritz et al., 1990) also disrupts the composition of the 
ribosome and the sequences assembled by the ribosomal 
protein.

CONCLUSIONS

In summary, 248 DEGs were identified and 10 hub 
genes were listed as potential biomarkers via bioinformatics 
analysis. An in-depth understanding of the molecular 
mechanisms underlying aspirin-induced Saccharomyces 
cerevisiae was gained. Although the present study is 
preliminary, the results may have potential for future 
clinical applications and as such require validation by 
further experimental studies.
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