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This study investigated the effect of aging on meiosis progression, embryo developmental competence 
and DNA double-strand breaks (DSBs) in mouse oocytes and resultant early embryos. Germinal vesicle 
(GV) oocytes were first cultured to monitor the progression of germinal vesicle breakdown (GVBD) and 
polar body extrusion (PBE) during in vitro maturation (IVM), then the harvested metaphase II (MII) 
oocytes were parthenogenetically activated to evaluate pronuclear (PN) formation of parthenogenetic 
embryo and embryo development. The cytoplasmic maturation was examined by measuring the 
intracellular reactive oxygen species (ROS) and glutathione (GSH). DNA DSBs were examined by 
immunostaining of pi-H2AX, the marker of DNA DSBs. The results showed that the GVBD rates were 
similar in oocytes of young and aged mice. Polar body extrusion was significantly delayed in aged mice 
(P < 0.05), however the rate of polar body extrusion was similar to that of young mice at 16 h of IVM. 
Moreover, PN formation of parthenogenetic embryo was significantly delayed in aged mice (P < 0.05). 
Afterward the two groups obtained similar results with respect to the percentages of activated oocytes, 
2-cell embryos and blastocysts. The cytoplasmic maturation of MII oocytes and blastocysts in aged mice 
were significantly compromised to those of young mice (P < 0.05). Furthermore, GV oocytes, 2-cell 
embryos and blastocysts showed significantly higher relative intensities of pi-H2AX in aged mice (P 
<0.05). Taken together, our result indicate that aging disturbed oocyte maturation and parthenogenetic 
embryo development, which could be related to insufficient cytoplasmic maturation and worsening DNA 
DSBs in oocytes and early embryos.

INTRODUCTION

Although both men and women suffering aging effect, 
fecundability has a stronger correlation with maternal 

age (Rothman et al., 2013). In aged women, 20–30% of 
ovulated oocytes are aneuploid (Nagaoka et al., 2012). 
Despite the rapid progress in assisted reproductive 
technology increasing the possibility to overcome the 
reproductive problems, the sterility of advanced maternal 
age is still an important question (Tarin et al., 2014).
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There is significant reduction in the possibility 
of fertilization and pregnancy with advanced maternal 
age in human beings and mice (Schwartz and Mayaux, 
1982; Cui et al., 2013). Even if pregnancy takes place, 
older females have greater risks of miscarriage and 
nondisjunction (Te and Pearson, 2002; Herbert et al., 
2015). These phenomena are ascribed to a complex series 
of factors including inappropriate hormone (follicle-
stimulating hormone) secretion (McTavish et al., 2007), 
deteriorative uterine apparatus (Schreuder et al., 2006) and 
shrinking oocyte pool (Fu et al., 2014). However, oocyte 
competency is thought to be the primary determinant of 
female reproductive aging (Krey and Grifo, 2001; Keefe et 
al., 2015), considering that oocytes donations from young 
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to older women nearly completely abrogate the effects of 
aging on fertility (Cohen et al., 1999).

Compared to young female mice, there are 
substantially increased aneuploidy rates (Sebestova et al., 
2012; Fu et al., 2014) and serious DNA damage in aged 
mice oocytes (Fujino et al., 1996). When chromosomes 
are broken, the DNA damage checkpoint is activated to 
allow extra time for repairing damaged DNA (Sancar et 
al., 2004; Carroll and Marangos, 2013; Rinaldi et al., 
2017). Recent reports confirm that oocytes carrying 
DNA damage associated with DNA double-strand breaks 
(DSBs) arrest in meiosis I through activation of the spindle 
assembly checkpoint, which results in anaphase-promoting 
complex (APC) inhibition (Collins et al., 2015; Marangos 
et al., 2015; Lane et al., 2017). Furthermore, DSBs also 
disrupt oocyte spindle assembly (Wang et al., 2016) and 
microtubule-kinetochore attachment during metaphase of 
the meiosis I (MI) (Mayer et al., 2016), which is harmful 
to the segregation of homologous chromosomes and may 
result in aneuploidy (Lu et al., 2017).

Besides, studies have also revealed that accumulation 
of reactive oxygen species (ROS) could induce DNA 
damage which may give rise to dramatic decline in oocyte 
cytoplasmic quality (Menezo et al., 2010; Collins and 
Jones, 2016; Meldrum et al., 2016). Reactive oxygen 
species (ROS) increases with age (Kregel and Zhang, 
2007), owing in part to lowered endogenous antioxidant 
defenses generating glutathione (GSH) levels (Suh et 
al., 2004; Noreen, 2018). GSH, an important indicator 
of oocyte cytoplasmic maturation (Curnow et al., 2010), 
plays an important role in protecting the cell against 
oxidative damage by eliminating the ROS (de Matos et 
al., 2000). Impaired GSH synthesis has been reported to 
compromise developmental potential of mouse oocytes 
(Jiao et al., 2013).

ROS and DNA damage effect accumulate with age 
(Garinis et al., 2008; Li et al., 2008; Meldrum et al., 
2016). Oocytes are the special cells which arrested at G2/
prophase in the ovary for the entire reproductive lifespan. 
Thus oocyte is particularly vulnerable to DNA damage. 
The histone H2A variant H2AX is phosphorylated on 
serine residue 139 at DNA damage sites, which is widely 
accepted as a marker for DNA DSBs (Rogakou et al., 1998). 
Hence, in this study we examined the dynamic changes 
of pi-H2AX during oocyte maturation and early embryo 
development, to investigate whether DNA DSBs were 
involved in the compromised oocyte meiosis progression 
and embryos developmental potential in aged mice.

MATERIALS AND METHODS

Unless otherwise stated, all chemicals and media 

were purchased from Sigma–Aldrich (MO, USA). All 
procedures contributing to this work were approved by 
the Animal Ethics Committee of the China Agricultural 
University and comply with the ethical principles of 
animal experimentation adopted by this committee.

Oocyte collection and in vitro maturation (IVM)
Swiss CD1 mice (Vital River Laboratory Animal 

Technology Co. Ltd., China) were housed in a room 
at 20°C to 22°C for 12 h (8AM-8PM) light and 12 
h dark cycle. Mice were superovulated with 10 IU 
(intraperitoneal) equine chorionic gonadotropin (eCG; 
Ningbo Hormone Products Co., China). According to 
previous report, germinal vesicle (GV) oocytes were 
isolated from “young” (6-week-old) or “aged” (9-month-
old) female Swiss CD1 mice at 48 h after eCG treatment 
and transferred into M2 medium supplemented with 3 mg/
ml bovine serum albumin (Flurkey, 2007). Then oocytes 
were rinsed thoroughly and placed in M16 medium 
containing 10% fetal bovine serum (FBS), 10μg/mL 
FSH, 10μg/mL LH, 0.01μg/mL epidermal growth factor 
(EGF) and 0.23 mM sodium pyruvate for IVM, covered 
with mineral oil and maintained in an incubator (at 37°C 
in an atmosphere of 5% CO2 and at maximum humidity). 
Germinal vesicle breakdown (GVBD) was observed every 
0.5 h beginning at 0 h of IVM and polar body extrusion 
(PBE) was assessed every 1 h since 8 h of IVM, until the 
incidence rates did not increase further.

Oocyte parthenogenetic activation (PA) and embryo 
development

At 16 h of IVM, metaphase II (MII) oocytes with 
polar bodies were chosen and activated incalcium-free 
human tubal fluid (HTF) medium containing 10 mM SrCl2 
and 5 mg/ml cytochalasin D (CD) for 2.5 h. Then oocytes 
were transferred into regular HTF medium supplemented 
with 5 mg/ml CD for 3.5 h. Finally, activated oocytes 
were cultured in drops of KSOM medium (Millipore, MA, 
USA). The pronuclear (PN) formation of parthenogenetic 
embryo was evaluated every 1 h from 3 h post activation 
until rising to a peak. Thereafter, the percentages of 
activated oocytes, 2-cell embryos and blastocysts were 
assessed at 8 h, 24 h and 96 h post activation, respectively.

Measurement of intracellular reactive oxygen species 
(ROS) and glutathione (GSH) levels

To measure ROS level, cells were incubated 
in dark with M2 supplemented with 1 mM 
2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) 
for 20 min at 37°C, washed three times with phosphate-
buffered saline (PBS) and placed into 50 μl droplets. The 
fluorescence was measured under an epifluorescence 
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microscope with a filter at 460 nm excitation. ImageJ 
software (National Institutes of Health, MA, USA) was 
used to analyse fluorescence images. The GSH level 
was measured by 10 μM 4-chloromethyl-6.8-difluoro-7-
hydroxycoumarin (Cell-Tracker Blue) with a filter at 370 
nm excitation, the experimental procedure was the same as 
the ROS measurement described above.

Immunofluorescent microscopy
Immunostaining analysis was carried out as described 

previously (Lin et al., 2014) with some modification. 
After brief washing, oocytes or embryos were fixed with 
3.7% (w/v) paraformaldehyde in PBS for 30 min and 
permeabilized with 0.5% (v/v) Triton X-100 in PBS for 
20 min. Subsequently, oocytes or embryos were blocked 
with 1% (w/v) BSA in PBS for 1 h before incubation 
with anti-phosphorylated H2AX at Ser139 (diluted 1:200; 
Bioworld, Beijing, China) overnight at 4°C. Following 
several washes, oocytes or embryos were incubated with 
fluorescein isothiocyanate (FITC) conjugated anti-rabbit 
secondary antibody (diluted 1:200; Beyotime, Shanghai, 
China) for 1h at room temperature. Finally, extensively 
rinsed oocytes or embryos were mounted on a glass slide 
in a drop of Vectashield anti-bleaching solutioncontaining 
3 µg/ml 4’, 6-diamidino-2-phenylindole (DAPI) (Vector 
Laboratories, CA, USA) and examined on a laser scanning 

confocal microscope (Nikon, Tokyo, Japan). The relative 
intensity of pi-H2AX was calculated using the ratio 
of antibody signal to DNA signal after subtraction of 
cytoplasm background fluorescence.

Statistical analysis
All experiments were repeated at least three times. 

Statistical analysis was conducted by one-way analysis of 
variance followed by Duncan’s test using SPSS software 
(IBM, NY, USA). Data were expressed as the mean ± 
standard error and a value of P< 0.05 was considered 
significant.

RESULTS

Aging did not prevent GVBD but delayed PBE (poler body 
extrusion)

To investigate whether aging affected oocyte meiosis 
resumption and final maturation, the progression of 
GVBD and PBE were traced successively during IVM. As 
shown in Figure 1A and B, most oocytes had undergone 
GVBD before 3.5 h of IVM in the aged and young groups 
(86.22±2.38% vs. 87.50±3.71%). However, the PBE started 
after 10 h of IVM in the aged group, which was delayed 
about an hour than that of the young group. Furthermore, 
the PBE rate in the aged group remained significantly 
below that of the young group at 10, 11 and 12 h during

Fig. 1. Kinetics of GVBD and PBE during oocyte maturation. Shown are the temporal trends of GVBD (A) and PBE (C) occurrence 
during IVM and the final rates of GVBD (B) and PBE (D) in oocytes. Number of oocytes analysed in total: n = 150 in the young 
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group; n = 147 in the aged group. *P< 0.05, **P< 0.01, ***P< 0.001.
IVM (0.69±0.69%, 12.52±1.99% and 35.39±2.41% vs. 
8.59±1.73%, 27.07±1.32% and 46.39±3.50%, P<0.05; 
Fig. 1C), although they finally achieved a similar incidence 
at 16 h of IVM (78.78±2.75% vs. 80.32±3.90%; Fig. 1D). 

Aging delayed PN formation but did not affect embryo 
development

To further determine whether mature oocytes went 
through normal embryo development in aged mice, the 

developmental process of PA embryos was monitored. 
Similar to PBE, PN formation of parthenogenetic embryo 
also showed a significant decline at 3, 4, 5 and 6 h post 
activation in the aged group (13.79±1.26%, 29.24±2.19%, 
57.45±2.50% and 78.72±1.26% vs. 36.30±1.48%, 59.77± 
4.63%, 75.79±2.74% and 85.71±2.71%, P < 0.05, Fig. 2A). 
Afterward the two groups obtained similar results with 
respect to the percentages of activated oocytes, 2-cell 
embryos and blastocysts (Fig. 2B). 

Fig. 2. Kinetics of PN formation in PA embryos. Shown were the temporal trends of PN formation (A) and the percentages of 
activated oocytes, 2-cell embryos and blastocysts (B). Number of oocytes analysed in total: n = 193 in the young group; n = 183 
in the aged group.

Fig. 3. Intracellular ROS and GSH levels in MII oocytes and blastocysts. Shown were representative images of ROS (A) and GSH 
(B) in MII oocytes. C and D were the representative images of ROS and GSH, respectively in blastocysts. The quantitative results 
from fluorescence intensities of ROS (E) and GSH (F) in MII oocytes and blastocysts, respectively. At least 25 MII oocytes or 
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blastocysts were analysed for each treatment per group. Scale bar is 50 μm in A and B and 20 μm in C and D.
Aging compromised cytoplasmic maturation in oocytes 
and early embryos

Although the percentage of GV oocytes developed 
to MII stage or blastocyst stage showed no significant 
difference between two groups, intracellular ROS and GSH 
levels were detected in MII oocytes and blastocysts. The 
aged group showed remarkably increased ROS levels and 
declined GSH levels both in MII oocytes and blastocysts 
(P<0.05, Fig. 3), meaning that their cytoplasmic maturation 
was substantially insufficient as compared with that of the 
young group. 

Fig. 4. Immunofluorescent staining of DNA DSBs in 
oocytes and early embryos. A, representative images of 
oocytes and early embryos stained with pi-H2AX antibody 
(green) and DAPI (blue). Scale bar = 20 μm. B, relative 
intensities of pi-H2AX signals normalized against DNA 
signals. At least 25 oocytes or early embryos were analysed 
at each stage per group.

Aging caused the worsening of DNA DSBs in oocytes and 
early embryos

Given that cell cycle was postponed during oocyte 
maturation and parthenogenetic embryo development in 
aged mice, it is doubtful whether the delay was related to 
DNA DSBs. To address this possibility, the signal of pi-
H2AX was detectedin oocytes and early embryos (Fig. 4A). 
The aged group showed stronger relative intensities of pi-

H2AX in GV oocytes, 2-cell embryos and blastocysts than 
the young group (P<0.05), while their relative intensities 
of pi-H2AX were similar in MII oocytes (Fig. 4B).

DISCUSSION

Our results indicated that the progression of PBE 
was delayed and the level of DSBs was significantly 
increased in aged mice oocytes (Figs. 1C, 4A). Previously, 
oocytes with high level of DSBs exhibit a delay in the 
time of emission of the first polar body (Ma et al., 2013; 
Lin et al., 2014). It had been observed that DNA damage 
induced before GVBD would lead to a MI arrest through 
activation of the spindle assembly checkpoint, which 
results in anaphase-promoting complex (APC) inhibition 
(Collins et al., 2015; Marangos et al., 2015; Lane et al., 
2017). The oocytes with high level of DSBs also disrupts 
microtubule-kinetochore attachment (Mayer et al., 2016), 
which would raise the rate of oocyte aneuploidy (Lu et al., 
2017). According, our previous research has observed the 
increased aneuploidy rates in aged mice oocytes (Fu et al., 
2014).

DSBs existed in aged GV oocytes do not prevent 
meiotic maturation. In this study, there was no significant 
difference on the rates of PBE at 16 h of IVM (Fig. 1D). 
Some studies provide evidence that the SAC activity 
is compromised in old oocytes which maybe a likely 
explanation for the inability of aged oocytes to establish 
an efficient MI checkpoint in response to DNA damage 
(Riris et al., 2014; Marangos et al., 2015). Recent study 
shows that escaping DNA damage checkpoint in maternal 
aging may be one of the causes of increased chromosome 
anomalies in oocytes from older mothers (Marangos et al., 
2015; Sakakibara et al., 2015).

Recent studies have revealed that the accumulation 
of ROS cause DNA damage in the aged oocytes during 
long periods of dictyate arrest and if it is not repaired, 
the DNA damage may give rise to dramatic declines in 
oocyte cytoplasmic quality (Menezo et al., 2010; Collins 
and Jones, 2016; Meldrum et al., 2016). Accordingly, 
our results showed oocytes cytoplasmic maturation was 
substantially compromised as remarkably increased ROS 
levels and declined GSH levels in aged mice MII oocytes 
(Fig. 3). ROS increases with age (Kregel and Zhang, 
2007), owing in part to lowered endogenous antioxidant 
defenses generating glutathione (GSH) levels (Suh et al., 
2004) which compromise the developmental potential of 
mouse oocytes (Jiao et al., 2013).

The compromise in oocyte cytoplasmic maturation 
could be harmful to embryo development (Krey and 
Grifo, 2001; Keefe et al., 2015). We observed that PN 
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formation of parthenogenetic embryo was delayed in 
aged mice (Fig. 2A). Similar result was also observed by 
other researchers in zygotes of middle-aged and aged mice 
(Cui et al., 2013). The cell cycle arrest found in zygotic 
development could be triggered by induced DNA DSBs 
(Carroll and Marangos, 2013). The arrest is mandatory 
to allow DNA repair activity in order to avoid mutation 
in all kinds of germ line (Goldmann et al., 2018). In this 
study, aged mice still had higher levels of DNA DSBs in 
2-cell embryos and blastocysts in compared to the young 
mice (Fig. 4B), indicated the unrepaired DNA damage 
in oocytes could persist into embryo development stage 
(Derijck et al., 2008).

In addition, the DNA DSBs in early embryos do 
not influence the subsequently embryo development. We 
confirmed the degrees of DNA DSBs in 2-cell embryos were 
higher in aged than young mice, however, the two groups 
obtained similar results with respect to the percentages of 
blastocysts (Fig. 2B). This probably because the embryo 
development through cells mitosis with the same property 
as somatic cells, which do not halt mitosis in response 
to DNA damage, and instead respond in G1 by either 
repairing their DNA or undergoing apoptosis (Hustedt and 
Durocher, 2017).

CONCLUSION

In conclusion, our study demonstrated that 
oocyte maturation and embryo development could be 
compromised with advanced maternal age, and it could 
be related to insufficient cytoplasmic maturation and 
worsening DNA DSBs in oocytes and early embryos. 
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