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The Myxovirus-resistance (Mx) gene has broad-spectrum antiviral effects. This gene is particularly 
important for the prevention and treatment of avian influenza. Currently, this gene is more studied in 
poultry, and studies in wild birds are rare. To understand the antiviral site of the Myxovirus-resistance 
(Mx) protein in the evolution of different wild birds, 10 wild bird species, including Anas formosa, Anas 
crecca, Anas strepera, Mergus squamatus, Accipiter nisus, Buteo hemilasius, Buteo lagopus, Passer 
montanus, Psittacula roseata and Emberiza elegans, were selected. The sequences of the GTPase effector 
domain (GED) of the Mx gene were determined by PCR sequencing. The haplotypes were analysed by 
DNA SP software. The Datamonkey Adaptive Evolution Server was used to detect the selection pressure. 
Phylogenetic analyses of the reported sequences of jungle fowl (Gallus gallus) and the 10 tested birds 
were performed. A total of 10 nucleotide sequences of the GED region of the Mx gene in wild birds 
were obtained, with a length of 231 bp, encoding 77 amino acids. The third locus in all tested amino 
acid sequences contains a Ser residue that corresponds to amino acid position 631, the virus resistance 
site, in the chicken Mx gene. The third locus in all tested amino acid sequences are Ser and corresponds 
to the chicken 631 amino acid position, the virus resistance site. Ten haplotypes were found with 60 
nucleotide mutations. Phylogenetic analysis by MEGA 7.0 revealed that the evolution of the tested genes 
is consistent with the evolution of the tested birds. The results of the selection stress test show that only a 
few sites in the GED region of the Mx gene are positively selected during evolution, and the majority of 
the amino acid sites are constrained by the strong structure and function of the protein, indicating a high 
risk of avian influenza infection in the tested wild birds.

INTRODUCTION

Myxovirus-resistance (Mx) protein belongs to 
the dynamin-like GTPase family with a broad anti-
virus spectrum. This protein confers resistance to RNA 
viruses, such as Orthomyxoviridae, Rhabdoviridae, 
Paramyxoviridae, Bunyaviridae, and Togaviridae, as well 
as some DNA viruses, including Hepadnaviridae (Frese et 
al., 1996; Gordien et al., 2001; Haller and Kochs, 2002; 
Sasaki et al., 2013).

The structures of Mx proteins in different species 
are basically the same, with three domains: a GTP-
binding domain (GD), comprising 3 regions near the 
N-terminus, which exhibits an important antiviral function 
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(Pitossi et al., 1993), and the central interactive domain 
(CID) and the GTPase effector region (GED) in the C-ter-
minus. The evolution of the leucine zipper at C-terminus is 
highly conserved, suggesting that this domain plays a vital 
role in the Mx protein function (Tao et al., 2016).

The Mx gene has been found in higher vertebrates, 
including humans, livestock and poultry (Lindenmann, 
1962). Subsequently, the Mx gene was also found in 
invertebrates, such as abalone (de Zoysa et al., 2007), 
indicating that the Mx gene exists in a variety of animals,
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primarily in the form of a recessive allele. Tumpey et al. 
(2007) found that the mouse Mx protein confers resistance 
to the avian influenza virus (AIV). Ko et al. (2002) found 
that the specific antiviral site of the chicken Mx gene is 
located at the 631st amino acid position encoded by exon 
14, which determines whether the Mx protein is resistant 
to avian influenza and herpes viruses, indicating that a 
Ser-to-Asn substitution at this position is the source of 
this antiviral ability (Ko et al., 2004; Sironi et al., 2008). 
Most studies have focused on the relationship between 
amino acid positions and disease resistance, among which 
most of studies have focused on the Mx gene in poultry 
(Li et al., 2009; Yin et al., 2010; Zhang et al., 2013; Niu 
et al., 2014). Recent studies have demonstrated that the 
specific variant in the Mx gene encoded by exon 14 is 
responsible for the antiviral activity of the protein (Fulton 
et al., 2014). The non-synonymous G/A polymorphism at 
position 2032 of chicken Mx cDNA results in a change 
at the 631st amino acid position of the Mx protein. The 
Mx gene has become an effective candidate for disease 
resistance in some poultry breeds. Studies have shown that 
the antiviral function and intracellular localization of the 
Mx gene are both dependent on the change at amino acid 
position 631. The Mx protein with an Asn at the 631 aa 
distributes in a granular-like pattern in the cytoplasm and 
shows the capacity for inhibiting viral growth. However, 
Mx protein with a Ser at the 631 aa did not inhibit viral 
growth and homogenous spread throughout the cytoplasm 
(Sasaki et al., 2013). The replacement of Glu→Arg near 
the carboxyl terminus of human Mx gene encoded by exon 
14 can inhibit the proliferation of influenza virus, but it 
has no resistance to (Vesicular Stomatitis Virus, VSV) 
infection (Zurcher et al., 1992).

As a spreader and reservoir of avian influenza virus 
(Zhang et al., 2012; Piaggio et al., 2012), wild birds are an 
increasing concern of many researchers. Avian influenza 
virus has been found in multiple species of wild birds, 
such as Anseriformes, the largest population, followed by 
Passeriformes (Zhao, 2008). Most aquatic migratory birds 
that have the capabilities of cross-boundary and long-
distance migration are the main hosts of avian influenza 

(Olsen et al., 2006).
The Mx gene is the only gene identified as resistant 

to avian influenza virus. However, there are few studies 
confirming whether this speculation is true in wild birds. 
The important variation and potential virus resistance of 
the Mx gene have intrigued researchers. In the present 
study, samples from 10 common wild birds from the East 
Asian migration route were used to amplify the nucleotide 
sequences of the GED coding region of the Mx gene and 
analyse their evolution; additionally, amino acid analysis 
of the S631N site was conducted to report the susceptibility 
of hosts to avian influenza. The present study provided 
a theoretical basis for studying the anti-influenza virus 
activity of the Mx gene in broader hosts.

MATERIALS AND METHODS

The samples were obtained from individuals that died 
during the rescue process in recent years and stored in our 
laboratory (Table I).

Table I.- Information of samples.

Family / 
Scientific name

Common name Code Year

Anatidae
Anas formosa Baikal Teal N1-2 2016
Anas crecca Green-winged Teal N2-1 2016
Anas strepera Gadwall N4-1 2016
Mergus squamatus Chinese Merganser N5-2 2012

Accipitridae
Accipiter nisus Sparrowhawk N6 2010
Buteo hemilasius Upland Buzzard N7 2010
Buteo lagopus Rough-legged Buzzard N8 2010

Passeridae
Passer montanus Eurasian Tree Sparrow N10 2010
Psittacula roseata Blossom-headed Parakeet N11 2010

Emberizidae
Emberiza elegans Yellow-throated Bunting N13 2010

Table II.- The sequences of primers for PCR.

Primers Samples Sequence (5’~3’) Product size (bp) Tm value (°C)

CMX1
CMX2

N6, N7, N8 AGTTCCTAGAAGCACTCACTTT
GATTAACTCGGCCACTGAGGT 

356 49

DMX1
DMX2

N11, N13 GCATGAGAGAGACTAACAGGAAAC
ACTCGGCCACTGAGGTAATTC 

382 51

EMX1
EMX2

N1, N2, N4, N5, N10 GCATGAGAGAGACTAACAGGAAAC
ACTGGCAGTAAAGGTCAGCG

535 51

S. Wang et al.
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PCR for Mx genes samples
Total DNA was extracted from the chest muscle by 

using the Animal DNAout Kit (Beijing TIANDZ Gene 
Technology Co., Ltd.). Three pairs of primers for Mx gene 
exon 14 were designed according to the mallard genomic 
sequence in GenBank (NW004677804) by Primer Premier 
5.0 and NCBI online (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/index.cgi?LINK_LOC=BlastHome). 
The primers were synthesized by Invitrogen Trading 
(Shanghai) Co., Ltd. The primer information is shown in 
Table II.

Exon 14 of the Mx gene was specifically amplified 
with the primers described above. The PCR reaction 
mixture contained two 20 μM primers at 0.8 μl each, 
Taq PCR master mix 10 μl, template 1.6 μl, and ddH2O 
6.8 μl to obtain a final volume of 20 μl. The following 
programme was used for the Mx gene PCR amplification: 
95°C for 5 min, followed by 30 cycles at 94°C for 30 s, 
Tm values of the different primers in accordance with the 
primers used (Table II) for 30 s, and 72°C for 45 s, with 
a final extension at 72°C for 5 min. The PCR product was 
detected by 1% agarose gel electrophoresis. The PCR 
products were recovered by the TIANGEN Universal DNA 
Purification Kit (TIANGEN Biotech (Beijing) Co., Ltd.). 
Each sample was sequenced three times by Invitrogen Co., 
Ltd. (Shanghai) for bidirectional sequencing.

Bioinformatics analysis
The PCR products were confirmed as Mx gene 

sequences by alignment in the GenBank database (https://
blast.ncbi.nlm.nih.gov/Blast.cgi).

The haplotype analysis was performed by DNA SP 
5.10.1 software (Librado and Rozas, 2009) (http://www.
ub.edu/dnasp/).

The evolution mode test was performed to determine 
the haplotype of the 10 GEDs in the Mx gene by the modified 
Nei-Gojobori method in Jukes-Cantor of MEGA7.0 
software and the Datamonkey Adaptive Evolution Server 
(http://www.datamonkey.org/) (Delport et al., 2010).

Prior to the phylogenetic analysis, the 10 obtained 

nucleotide sequences were tested for substitution saturation 
by DAMBE6.4 software (Xia et al., 2003) to determine 
their suitability for further phylogenetic tree construction.

The phylogenetic tree was constructed by ML 
methods, in which the Bayesian information criterion 
(BIC) standard offered by MEGA7.0 software was used 
to select the most suitable model, and the lowest BIC 
value was adopted to represent the best model selection. 
A topological structure with highest value of maximum-
likelihood was selected as the final phylogenetic tree, and 
the result was verified by the MP method. The Mx exon 
14 sequence of Gallus gallus was selected as an outgroup 
to assist in locating the evolutionary tree roots. The 
confidence of the branches of phylogenetic tree was tested 
by bootstrap analysis for 1000 replicates. The sequences 
used are shown in Table III.

Table III.- Accession numbers of sequences used for 
phylogenetic analysis.

Name Accession number

Anas platyrhynchos XM013105472

Gallus gallus S Z23618

Gallus gallus RIR EF575619

Gallus gallus TB EF575627

Gallus gallus SK EF575630

Gallus gallus DQ788616

Gallus gallus Rhode Island Red DQ788613

Gallus gallus Silkie DQ788614

Gallus gallus BY1 EF575623

Gallus gallus WL-N EF575630

Gallus gallus N EU348752

Meleagris gallopavo XM003202961

Caprimulgus carolinensis XM010173565

Coturnix japonica XM015882889

Fig. 1. The nucleotide variation sites of Mx gene exon 14 in 10 birds.
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RESULTS

Mx gene amplification
The obtained Mx gene exon 14 was identified as 231 

bp, encoding a total of 77 amino acids. 

Sequence variation analysis
The complete coding regions of Mx gene exon 14 

were obtained from 10 species of birds: Anas formosa, 
Anas crecca, Anas strepera, Mergus squamatus, Accipiter 
nisus, Buteo hemilasius, Buteo lagopus, Passer montanus, 
Psittacula roseata and Emberiza elegans.

Ten haplotypes of Mx gene exon 14 were confirmed 
in the present study. No cross-species-shared haplotypes 
were found. The coding region length was 231 bp 
(excluding the stop codon) with 60 nucleotide mutation 
sites, 28 parsimony-informative sites (i.e., the variation 
contains at least two types of nucleotide or amino acid) 
and 33 single nucleotide polymorphism sites (Fig. 1). The 
average contents of A, T, G and C were 29.4%, 25.5%, 
21.2% and 23.9%, respectively, among which the A + T 
content was higher than the G+C content. Our finding also 
indicates that 32 amino acid mutation sites were found in 
the 78 amino acids encoded by Mx gene exon 14 (Fig. 2). 

Test of selection pressure for the GED region
The test of selection pressure for the GED region 

indicates that the average non-synonymous nucleotide 
substitution rate in the GED region of the Mx gene (exon 14 
coding) was dN = 0.117, whereas the average synonymous 
nucleotide substitution rate was dS = 0.26165, giving dN/
dS = 0.447 (<1). The model selection result shows that the 
most suitable nucleotide substitution model for the detected 
sequence was HKY85. In the present study, the results 
of different methods were not the same. Three positive 
selection sites and 2 negative selection sites were detected 
by the Internal Fixed Effects Likelihood (IFEL) Method. 

No positive selection site was detected by other methods. 
Seven negative selection sites were found by the Fixed 
Effects Likelihood (FEL) Method. Each positive selection 
site was detected by the Single-Likelihood Ancestor 
Counting (SALC) Method and the Fast, Unconstrained 
Bayesian AppRoximation for Rehabilitation (FUBAR) 
Method (Table IV).

Phylogenetic analysis for Mx gene
The test of substitution saturation satisfied the 

conditions P = 0.0000 and ISS <ISS.C (Table V); thus, the 
sequences were unsaturated and suitable for establishing 
the phylogenetic tree. In the present study, the maximum 
likelihood and K2 model were adopted to establish 
the phylogenetic tree. The topological structures were 
identical, except for differences in confidence between the 
phylogenetic trees constructed by the ML and MP methods 
(Fig. 3). The sequences of the species in the phylogenetic 
tree were clustered together according to their respective 
classifications. Galliformes differentiated into two large 
groups. In another large group, two subgroups were 
observed: the first group consisted of Passeriformes, 
Anseriformes and Psittaciformes, and the second group 
comprised Falconiformes and Caprimulgiformes.

Fig. 2. The amino acid variation sites of Mx protein in 10 
birds. 

Table IV.- Selection pressure analysis of Mx gene exon14.

Codon FUBAR SLAC IFEL FEL
dN/dS Post. Pr dN/dS P-value dN/dS P-value dN/dS P-value

8 0.0868
9 0.0244 0.9832 0.7437 0.0687 0.0234 0.0051
10 0.0810
20 0.0792
22 0.0675
32 0.0921 0.0433
42 >100 0.0594
45 0.0810
53 >100 0.0883
74 0.0794
77 >100 0.0958

S. Wang et al.
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Fig. 3. The phylogenetic trees of Mx exon 14 plotted by Maximum Likelihood and Maximum parsimony methods. The confidence 
of the branches of phylogenetic tree of Maximum Likelihood and Maximum parsimony were symbol in the figure and separated 
by‘/’. GenBank accession numbers for: N1, MF667526; N2, MF667527; N4, MF667528; N5, MF667529; N6, MF667530; N7, 
MF667531; N8, MF667532; N10, MF667533; N11, MF667534; N13, MF667535.

Table V.- The test of substitution saturation for 
nucleotide sequences.

Gene ISS ISS.C P value 
(Double 

tail)

Significance 
levelSymmetric 

tree
Unbalanced 

tree
Mx 0.3477 0.7034 0.5710 0.0000 Extremely 

significant

DISCUSSION

Mx gene antiviral sites
In poultry, the susceptibility and resistance to a virus 

are determined by the amino acid at the 631st site in the Mx 
protein. When this site is occupied by Asn, the Mx protein 

shows virus resistance, whereas when a substitution of Ser 
occurs, the birds are susceptible to a virus (Ko et al., 2002). 
All amplified complete sequences from the coding region 
of exon 14 were compared with those of the complete 
coding region of the jungle fowl gene (EF575689). The 
results showed that the target 631st amino acid in the entire 
Mx protein sequence was located at the 3rd amino acid site 
of the amplified complete coding region of exon 14 in all 
10 birds. All 3rd amino acid sites detected in the present 
test samples were Ser residues, demonstrating that these 
10 wild birds were susceptible to avian influenza virus, 
and the functions of their Mx proteins were lost during 
the course of the early replication of influenza virus. As 
all subtypes of avian influenza viruses have been detected 
in wild birds (Zhao, 2008), a large group of carriers and 
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spreaders of avian influenza viruses are under great threat. 
Further understanding of the role of the Mx protein may 
contribute a new strategy in the prevention of the global 
spread of avian influenza and other viruses.

Test of selection pressure for the GED region in the Mx 
gene

The role of natural selection in species differentiation 
has become a topic of renewed interest in the past few 
decades (Schluter and Conte, 2009; Arnegard et al., 
2014). Selection pressure is the main driving force for the 
genetic evolution of biological groups. Different selection 
pressures may lead to different evolutionary directions. 
With the synonymous mutation rate as a criterion, it can 
be concluded that the retention of the non-synonymous 
mutation is supported by natural selection or obstruction. 
Non-synonymous substitutes can directly affect the 
function of the protein and are therefore more likely to alter 
biological adaptability than synonymous substitutions. A 
significantly higher mutation rate of the non-synonymous 
mutation than that of the synonymous mutation is evidence 
of the adaptive evolution of the protein (Yang, 2006). The 
maximum likelihood method for the selection pressure has 
been widely accepted, in which the selection coefficient 
ω (non-synonymous/synonymous replacement rate ratio, 
dN/dS) intuitively reflects the evolutionary trend of the 
organism at the codon level. These parameters can be used 
to measure the selection pressure at the protein level and 
are important measures based on the codon level analysis 
of the genetic evolution of the coding gene. Additionally, 
ω > 1, ω = 1 and ω <1 represent positive selection, neutral 
selection and purification selection (negative selection), 
respectively, during evolution (Yang and Bielawski, 2000; 
Choisy et al., 2004). If natural selection has no effect on 
the fitness of the gene, then the non-synonymous mutation 
will be retained at the same rate as the synonymous 
mutation, i.e., dN = dS, ω = 1. If the non-synonymous 
mutation is adverse, then the purifying selection will 
reduce its retention rate, resulting in dN < dS, ω < 1. If the 
non-synonymous mutations are favoured by Darwinian 
selection, then these polymorphisms will be preserved at 
a greater rate than the synonym mutations, resulting in dN 
> dS, ω > 1. This method has been widely used for the 
analysis of gene adaptive evolution related to reproductive 
performance and disease resistance (Yang, 2000; Sainudiin 
et al., 2005).

The three methods used for pressure selection detection 
on the genetic locus are maximum likelihood, distance 
and parsimony. Among these methods, the maximum 
likelihood method is more accurate for the study of species 
fecundity and the adaptive evolution of antiviral and other 
related genes (Koch et al., 2007). Therefore, in the present 

study, the maximum likelihood method based on the 
online software was selected for testing. With a selection 
coefficient of 0.447 (dN / dS = 0.447) <1, the select pressure 
can be considered as purely selective. Further, 5 detection 
methods of pressure selection, provided by Datamonkey 
were used. Among these methods, three positive selection 
sites were detected by the IFEL method. To a certain 
extent, these sites were affected by the positive selection 
pressure at the population level. In the REL method, dN> 
dS was not detected; that is, the codon was subject to 
positive selection pressure, and the results showed that 
the GED region was under pure selection. This result is 
consistent with the average stress level of protein in the 
GED region. The results also showed that the antiviral site 
S631N was under neutral evolution, and compared with 
other loci in the GED coding region, this codon was under 
weaker mutation restriction of the protein structure. In the 
present study, the 631st sites of different bird families were 
under neutral selection pressure. Notably, the 9th codon 
was under purifying selection by the other four methods, 
except for the REL method. The mutation of the Mx gene 
may occur in all hosts; thus, the discovery of new antiviral 
sites can be expected. It is necessary to carefully analyse 
the variation caused by each mutation. 

In summary, most of the amino acid sites in the GED 
region of the Mx genes from 10 species of birds were 
under strong limitation of protein structure and function, 
and only a small number of sites were under the pressure 
of positive selection during the evolutionary process. The 
results revealed that the Mx proteins in the tested birds 
were not prone to mutation. 

Evolution of Mx gene
Mitochondrial DNA(mtDNA) is widely used in the 

classification of birds for its unique advantages (Awan et 
al., 2017). The species classification of birds in the present 
study indicates that different species are roughly clustered 
together as a group on the taxonomic category of Order, 
including the Galliformes group with related species, 
the Caprimulgiformes and Falconiformes group, and the 
Anseriformes and Passeriformes group. There are related 
records in GenBank showing higher sequence homology 
for the Mx protein in Galliformes and the 631st amino acid 
site in most species is occupied by Serine, which implies a 
great potential for susceptibility to virus. Asn has only been 
observed in a few Galliformes species, implying antiviral 
resistance. This finding confirms the Jungle fowl as the 
wild ancestor of the domestic chicken, and to obtain good 
breeds in the poultry industry, chickens have undertaken 
great anthropocratic selection pressure, during which the 
effectiveness of artificial selection overwhelms that of 
natural selection. Thus, the S631N sites of a few Galliformes 
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incline to express as environmental adaptability and 
evolve in the direction of disease resistance. Wild birds 
are different from poultry, primarily undertaking natural 
selection rather than aggressive anthropocratic selection 
for chickens.

The evolution of the GED sequence of the Mx gene 
is roughly consistent with the sequence of bird evolution 
(Hackett et al., 2008; Jarvis et al., 2014). The 10 species 
of birds are among the list of animal species infected with 
avian influenza published by the US Geological Survey 
(USGS National Wildlife Health Centre, 2016), which 
suggests that wild birds are highly susceptible and show 
great potential as hosts for the spread of bird flu on the 
basis of the defence mechanism of the Mx protein.

CONCLUSIONS

Studies of the Mx gene in wild birds are rare. The 
present study is the first to report the sequences of the 
Mx genes of 10 species of birds and characterize their 
relationships among other birds. The relationship between 
the classification status of the 10 tested bird species in the 
evolutionary category and the potential resistance to virus 
of the Mx gene still require much experimental verification 
in more avian hosts.
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