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The suitability of entomopathogenic nematodes as biological control agents of specific target insects 
is affected by their level of infectivity and reproductive capacity. Therefore, in the present study the 
productivity of five entomopathogenic nematodes (Steinernema feltiae, S. kraussei, S. carpocapsae, 
Heterorhabditis bacteriophora and H. indica) were compared in Galleria mellonella larvae. The 
production of infective juveniles (IJ) in G. mellonella was significantly affected by nematode species. 
Significantly higher numbers of IJ were produced by Heterorhabditid species than Steinernematid species 
in the cadaver. The production of IJ was the maximum in the case of H. bacteriophora which was not 
statistically different form H. indica. Minimum IJ were produced by S. feltiae. The IJ produced by S. 
kraussei and S. carpocapsae were statistically similar. The emergence of Steinernematids started from 
the 14th day and that of Heterorhabditids from the 17th day. In case of Heterorhabditids, the maximum 
emergence of H. bacteriophora IJ (199,894) was recorded on the 23rd day and that of H. indica on the 20th 
day (99,495). On the other hand, in case of Steinernematids, the maximum emergence of IJ of S. feltiae 
and S. kraussei was recorded on the 17th day (36,180 and 45,225 respectively) and that of S. carpocapsae 
on the 20th day (21,407). It is concluded that there was greater emergence of IJ from the Heterorhabditid 
species than those from the Steinernematid species and hence can be used for the management of insect 
pests.

INTRODUCTION

The biological control potential of entomopathogenic 
nematodes (EPN) has now become well established 

because the ability to mass produce them has allowed the 
development techniques for their inundative application 
(Griffin et al., 2005). Production of EPN on large scale 
involving techniques based on fermentation technology 
is an industrial process (Gaugler and Han, 2002; Ehlers 
and Shapiro-Ilan, 2005a). In developing countries like 
Pakistan, such technologies are not yet available and 
in vivo mass production of EPN is done in host insects 
(Ehlers and Shapiro-Ilan, 2005b). These techniques 
are laborious and are only feasible where labour costs
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are low. In Pakistan, preliminary field evaluation of 
EPN is done with in vivo produced nematodes in hosts 
like Galleria mellonella (Rahoo et al., 2011, 2017a). 
As biological control becomes more prevalent in pest 
management, it will become increasingly important to 
anticipate interactions between biological control agents 
(Kaya, 1990; Kaya et al., 1995; Rosenheim et al., 1995). 

Features of EPN that affect their suitability as 
biological control agents of specific target insects are their 
level of infectivity and reproductive capacity. Infectivity 
refers to the ability of nematodes to cause infection in a 
target insect (Tanda and Fuxa, 1989) and has been shown 
to vary among nematodes within specific target hosts 
(Bedding et al., 1983; Molyneux et al., 1983; Morris et 
al., 1990; Mannion, 1992) and among hosts for a given 
nematode species or strain (Bedding et al., 1983; Morris 
et al., 1990). The reproductive capacity of nematodes has 
also been shown to differ among nematodes within target 
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insects (Morris et al., 1990; Mannion and Jansson, 1992) 
and among hosts within specific nematode species or 
strains (Morris et al., 1990). Nematodes with higher levels 
of infectivity and reproduction within a specific target host 
may be more effective in controlling a particular insect 
under field conditions. The reproductive capacity is also 
central to long-term persistence. Morris et al. (1990) noted 
that a high infection rate of soil insects followed by a high 
rate of reproduction is critical to ensure re-infestation of 
the habitat by nematode progeny.

There can be differences in the production of infective 
juveniles (IJ) among different nematode genera. Mannion 
(1992) found that Heterorhabditis spp. had the lowest LC50 
and LC90 values, produced more progeny per cadaver, had 
higher levels of infectivity in sand, soil and Petri plates, 
killed more hosts within sweet potato storage roots and 
had a greater ability to exit infected weevil cadavers 
within storage roots and infect new hosts in the soil than 
Steinernema spp. Jansson et al. (1990, 1991, 1993) found 
Heterorhabditis spp. to be more efficacious against sweet 
potato weevil Cylas formicarius. Jansson et al. (1993) 
also found that Heterorhabditids persisted longer than 
Steinernematids in the field. It was hypothesized that the 
production of IJ from G. mellonella cadavers would not 
differ among different species of EPN. Therefore, the 
objective of conducting the present study was to compare 
the productivity of five entomopathogenic nematodes 
(Steinernema carpocapsae, S. feltiae, S. kraussei, 
Heterorhabditis bacteriophora and H. indica) in Galleria 
mellonella larvae. 

MATERIALS AND METHODS

Nematode cultures
Entomopathogenic nematodes (Steinernema 

carpocapsae, S. feltiae, S. kraussei, Heterorhabditis 
bacteriophora and H. indica) used in the study were 
obtained from stock cultures supplied by CABI Bioscience 
and were maintained in the laboratory at the Department of 
Agriculture, University of Reading, United Kingdom. The 
nematodes were cultured in the last instar larvae of greater 
wax moth, Galleria mellonella (Lepidoptera: Pyralidae) 
(Livefoods Direct Ltd. Sheffield, UK) at 25°C. Ten G. 
mellonella larvae were placed on each 9 cm Petri dishes 
lined with a Whatman® No. 1 filter paper. The larvae in 
dishes were individually inoculated with approximately 
2000 infective juveniles (IJ) of abovementioned five EPN 
contained in 1 ml of tap water. The Petri dishes were sealed 
with Nescofilm® sealing film (Azwell Inc., Osaka, Japan) 
and placed in an incubator at 20°C (Dutky et al., 1964). 

After incubation at 20°C for 10 days, the infected 
G. mellonella larvae were taken from the Petri dishes and 

placed on modified white traps (White, 1927). After some 
days, nematodes moved from the G. mellonella cadavers 
to the water. Water containing the IJ was transferred to a 
clean beaker filled with fresh tap water and the IJ were 
allowed to settle for 30 min. The supernatant was decanted, 
the beaker was refilled with fresh tap water and the process 
was repeated three times until a clean suspension was 
obtained. Excess water was discarded and nematodes were 
kept at 10°C and used within two weeks (Kaya and Stock, 
1997). IJ of the nematode species were acclimatized at 
room temperature (21-23°C) for an hour and their viability 
was tested under a stereomicroscope before use.

Productivity of five EPN species in G. mellonella larvae
Fifty late instar larvae of G. mellonella weighing 

between 0.25-0.35 g were selected and individual weights 
recorded. Each larva was inoculated with 0.15 ml of 
suspension of S. carpocapsae, S. feltiae, S. kraussei, H. 
bacteriophora and H. indica containing a mean of 50, 
67, 73, 55 and 47 IJ, respectively. This was done in 30 
mm Petri dishes as previously described. The dishes were 
stored in an incubator at 20ºC for four days in which time 
all larvae succumbed to nematode infection. Fifty 30 mm 
Petri dishes containing 5 g of dry silver sand were prepared 
to which 1 ml of tap water was added. An infected larva 
(cadaver) killed by one of the above mentioned species 
was added to each dish which was sealed and then kept in 
an incubator at 20ºC. To facilitate counting, the nematodes 
were divided into two groups (Steinernematids and 
Heterorhabditids) and were evaluated on different days. 
One week after inoculation each cadaver was moved on 
the supporting Netlon and transferred to new Petri dish 
containing 5 g silver sand plus 1 ml water. The Petri dishes 
were then re-sealed and returned to the incubator. The sand 
from the original dish was moved to a modified miniature 
Baermann extraction tray made from a 50 mm Petri dish, 
to recover any nematodes that may have emerged from the 
cadavers. This procedure was repeated after every three 
days until no more nematodes were recovered. Each Petri 
dish was monitored daily to observe when nematodes first 
emerged from cadavers.

Statistical analysis
All the data were found normally distributed and did 

not require transformation. The data were subjected to 
Analysis of Variance (ANOVA) using GenStat package 
2009, (12th edition) version 12.1.0.3278 (www.vsni.co.uk). 
The differences among means were compared by Fisher’s 
protected least significant difference test at (P≤0.05). 
Standard errors of means were calculated in Microsoft 
Excel 2007. 
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Fig. 1. Production of infective juveniles of five EPN in G. 
mellonella.

Fig. 2. Days-wise production of infective juveniles of three 
Steinernematids (A) and two Heterorhabditids (B) in G. 
mellonella.

RESULTS

Productivity of EPN species in G. mellonella larvae 
The production of IJ in G. mellonella was 

significantly affected by nematode species. Significantly 
higher numbers of IJ were produced by Heterorhabditid 
species than Steinernematid species in the cadaver. The 
production of IJ was the maximum in the case of H. 
bacteriophora which was not statistically different form 
H. indica. The minimum IJ were produced by S. feltiae. 
The IJ produced by S. kraussei and S. carpocapsae were 
statistically similar (Fig. 1).

The emergence of Steinernematids started from the 
14th day and those of Heterorhabditids from the 17th day. 
In case of Heterorhabditids, the maximum emergence of 
H. bacteriophora IJ (199,894) was recorded on the 23rd 
day and that of H. indica on the 20th day (99,495). On 

the other hand, in case of Steinernematids, the maximum 
emergence of IJ of S. feltiae and S. kraussei was recorded 
on the 17th day (36,180 and 45,22, respectively) and that 
of S. carpocapsae on the 20th day (21,407). The number 
of S. feltiae emerging from the larvae was between 14,094 
and 35,120 on the 14th and 17th days, respectively whereas 
the number of S. kraussei was 6,167 and 45,200 on the 
14th and 17th days, respectively. Similarly, the number of S. 
carpocapsae was 4 on the 14th day and 21,570 on the 20th 
day (Fig. 2A). On the other hand, H. bacteriophora yielded 
114 and 203,000 IJ on the 17th and 23rd days, respectively 
whereas H. indica gave 2,300 and 101,536 IJ on the 17th 
and 20th days, respectively (Fig. 2B).

DISCUSSION

In the present study that compared the productivity of 
different EPN species in the larvae of G. mellonella, greater 
numbers of H. bacteriophora IJ were recovered than other 
species. The smallest number of IJ was with S. carpocapsae. 
There was a difference in the time of emergence of the 
IJ from the host cadaver; Steinernematids emerged from 
cadavers sooner than Heterorhabditids. The reason may 
be that the size of Steinernematid IJ is greater than those 
of Heterorhabditis spp. The larger size of Steinernematids 
would occupy more space inside the cadavers and require 
more nutrient resources and so produce less progeny. It is 
known that emergence of IJ is related to depletion of food 
reserves and crowding within the host cadavers (Kaya, 
1985, 1987) and possibly build-up of ammonia (San-Blas 
et al., 2008). Patterns in total reproduction of nematodes 
differed among the five species. Heterorhabditis species 
consistently produced more progeny than the Steinernema 
species. Patterns of emergence from cadavers of G. 
mellonella were consistent. As noted earlier, emergence of 
infective juveniles is related to depletion of food reserves 
and crowding (Kaya, 1985, 1987). These factors may have 
been less apparent to emerging infective juveniles from 
all species from G. mellonella larvae. It is recognized 
that a laboratory bioassay that predicts performance 
of EPN in the field is needed to facilitate selection of 
nematodes in biological control programmes (Hominick, 
1990; Mannion, 1992). Mannion (1992) conducted Petri 
dish, sand, soil and simulated field bioassays to select 
suitable EPN for biological control of C. formicarius and 
consistently found that Heterorhabditids were superior to 
Steinernematids in all bioassay systems tested. 

Differences between the reproduction potential of 
EPN may also be related to the isolates, species, and host 
susceptibility, number of bacteria per infective stage, 
invasion rate, temperature and humidity (Rahoo et al., 
2016a, b, 2017b; Nabeel et al., 2018). The life cycles 
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of Steinernematid and Heterorhabditid nematodes are 
different. The mode of reproduction of the first generation 
adults is bisexual for Steinernema spp. (Kondo and 
Ishibashi, 1987; Wouts, 1984), while it is hermaphroditic 
for Heterorhabditis spp. which begins sexual reproduction 
from the second generation (Glazer et al., 1994; Zioni et 
al., 1992). In most of the previous studies, attention has 
been placed mainly on the production and/or pathogenicity 
of IJ (Dunphy et al., 1985; Mracek et al., 1988; Selvan 
et al., 1993; Glazer et al., 1994). Contrarily, not so much 
attention has been placed on the origin of juveniles via 
endotokia matricida (intrauterine larval development 
leading to the destruction of the female by the juveniles) 
which is generally considered as the failure of normally 
oviparous nematodes to deposit their eggs which may then 
accumulate and continue development within the female 
body. In the comparison between H. bacteriophora and S. 
feltiae, the former differed from the latter in the occurrence 
rate of endotokia matricida and the production of IJ. 
Generally the Heterorhabditids produced more IJ than the 
Steinernematids. It is concluded from the present study 
that Heterorhabditis species produced more IJ, hence can 
be used for the management of insect pests and root-knot 
nematodes (Fateh et al., 2017; Hussain et al., 2016; Javed 
et al., 2017a, b; Kassi et al., 2018; Kayani et al., 2017; 
Khan et al., 2017; Mukhtar et al., 2017a, b; Tariq-Khan et 
al., 2017). 

CONCLUSION 

As heterorhabditid species produced greater numbers 
of infective juveniles in Galleria mellonella larvae than 
steinernematid species and are recommended for use as 
biological control agents of insect pests in Pakistan.
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