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Abstract | Carotenoids are natural pigments, synthesized in photosynthetic organisms e.g., plants, bacteria, 
and algae, while carotenoids also be synthesized in some non-photosynthetic fungi or bacteria. The color gamut 
of carotenoids is from colorless to yellow, orange to red color, with variations reflected in many vegetables, 
fruits and flowers. They are categorized into two types: (1) xanthophylls and (2) carotenes. For instance, 
lycopene is found in tomatoes and watermelon, beta carotene in sweet carrots and potatoes, lutein in marigold 
flowers, and capsanthin and capsorubin in crimson pepper. Zeaxanthin is protective against scalp diseases, 
UV and skin redness. Lycopene is a bioactive component regarding the remedy of persistent sicknesses and 
lowering the chance of cardiovascular illnesses or cancer. The tremendous results of carotenoids in human 
food have prompted numerous efforts in plant genetic engineering to supply products with greater carotenoid 
accumulation, which isn’t always only beneficial for agriculture but also has consequences for scientific research 
in terms of organic, chemical, and molecular or genetic regulation. Carotenoid metabolism and its regulatory 
network is not only increasing plant “defense” but also enhance the quality of plants. In this overview article, 
we summarize the results of current research studies on carotenoid metabolism, knowledge about genetic 
information, and enzymes that are involved in carotenoid metabolism and regulation, underlying carotenoid 
accumulation, and factors that affect carotenoid regulation, and health benefits of carotenoids.
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Introduction

Carotenoids  are the second abundantly occurring 
natural pigments on the earth. They have 

more than 750 members in their family. They are 
synthesized in all the photosynthetic organisms 
e.g., bacteria, algae, and plants, carotenoids also 
be synthesized in a few non-photosynthetic fungi 
and bacteria. The color of Carotenoids varies from 
colorless to yellow, orange, and red color, with 
distinctions reflected in many vegetables, fruits, and 
flowers (Havaux, 2014; Jha et al., 2022). Several 
eye-catching examples consist of lycopene found 
in tomatoes and watermelon, b-carotene in sweet 
potatoes and carrots, lutein found in marigold flowers 
and capsanthin is present in red pepper (Cazzonelli 
and Pogson, 2010; Ruiz and Rodrı, 2012; Havaux, 
2014). Carotenoids have been categorized into 
two categories: (1)  Xanthophylls  (2)  Carotenes 
Xanthophylls stand as well-known antioxidants and 
it has been proven that when they are exposed to 
excessive radiation, in photosystem II they Quench 
the excited repute of singlet chlorophyll (Robert et al., 
2004). Zeaxanthin belongs to the family xanthophyll, 
it is a nutritional carotenoid (Gao et al., 2016). 
Zeaxanthin is extensively present as a pigment in fruits 
and vegetables and has radical scavenging activities 
(Nishino et al., 2017), Which allows showing oblique 
antimalarial actions and serves as an excellent pointer 
for parasitism (Leung et al., 2020). A protecting effect 
on neurological problems has also been proven via 
Zeaxanthin by using various mechanisms i.e., anti-
oxidant, (Sahin et al., 2019) anti-apoptotic, and anti-
inflammatory (Barker et al., 2011; Yu et al., 2018).

It can perform a vital character in anti-allergenic 
reactions (Sakai et al., 2009). Zeaxanthin can 
be protective against scalp sicknesses, UV, pores 
(Huang et al., 2019), and skin redness (Silv´an et al., 
2016). Due to the shielding effects of zeaxanthin 
in contradiction of excessive light and oxidative 
pressure, it is ophthalmologically useful (Nakamura 
et al., 2020). Zeaxanthin can limit cancer cell invasion 
and migration it exhibits anticancer activity (Bi et 
al., 2016). It provokes tumor cells to have inverse 
multidrug reluctance, which leads to cell death 
(Sheng et al., 2020). According to Sugiura et al. 
(2012), excessive consumption of antioxidants could 
shield antagonistically to osteoporosis, by keeping 
bone healthy. 

Krinsky and Johnson (2005) in their experiment 
demonstrated that carotenoids are one of the most 
essential and crucial elements in human food because 
they provide catalysts for the biogenesis of vitamin A. 
Vitamin A is a very well carotenoid speculative with a 
wide range of organic characteristics. Ford and Erdman 
(2012) in their study demonstrated that, lycopene is 
the maximum profuse carotenoid in ripped tomatoes 
is regarded as a bioactive aspect apropos the remedy 
of continual illnesses and decreasing the chance of 
cardiovascular sicknesses and cancers (Sandmann et 
al., 2006). According to Vogel et al. (2010) in addition 
to, features of carotenoids as a nutritional pigment, 
they also serve as the precursors of numerous vital 
unstable flavor compounds in plant life, which 
confers the sensory traits which may be detected 
through consumers. Carotenes in plants produce a 
wide range of compounds, including apocarotenoids, 
which are produced through oxidative cleavage 
and provide volatile compounds that make up the 
aromatic components of leaves, flora, and fruits, as 
well as well-known phytohormones such as a bscisic 
acid and strigolactones, which are produced through 
abiotic stress (Rolland et al., 2012). According to 
The Tomato Genome Consortium (2012), these 
beneficial effects of carotenes in the human diet 
have promoted numerous attempts in plant genetic 
engineering to create products with higher carotenoid 
content, which is useful for agriculture but also has 
implications for medical research in terms of organic, 
chemical, and molecular genetic law, carotenoid 
metabolism is influenced by a variety of factors, 
including gene expression regulation. A specific event, 
which could be an environmental or developmental 
cue, could activate and adjust a specific carotenoid 
pathway community via restricting enzymes. Plant 
protection and reliability will be improved by 
increasing carotenoid metabolic activity and its 
regulatory network (Sheng et al., 2020). There may 
be a complicated aggregate of bioactive additives in 
Tomato which serves as a nutritional source of vitamins, 
an aggregate of carotenoids, consisting of b-carotene, 
lycopene, and lutein. During the fruit ripening, the 
mechanism which controls carotenoid metabolism 
is systematic and complicated. Tomato genomes 
have been sequenced, revealing approximately 35000 
protein-coding genes, laying the groundwork for 
studying interactions among transcription elements, 
phytohormone signaling pathways, and other factors 
influencing carotenoid metabolic activity (Rolland et 
al., 2012).
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Klee  and Giovannoni (2011) concluded that 
the mutant’s availability with the single genetic 
mutations as well as knockdown transgenesis has a 
great influence on the accumulation of carotenoid has 
which makes tomato an excellent system to study the 
metabolism of carotenoid. We analyze the findings of 
recent research on carotenoid metabolism, regulation, 
factors affecting regulation, and health benefits in this 
review article.

Carotenoid biosynthesis and metabolism in tomato 
(Solanum lycopersicum)
Noteworthy progress has been made to understand 
carotenoid metabolism and regulation. According to 
Chappell et al. (1995),  biosynthesis of Carotenoid 
is reliant on the availability of the building blocks 
isopentenyl diphosphate (IPP) and its isomer 
dimethylallyl diphosphate (DMAPP). Isopentenyl 
diphosphate (IPP) and dimethylallyl diphosphate 
(DMP) has two wonderful routes in plants (DMAPP). 
There are two pathways for the biosynthesis of 
carotenoid, inside the cytosol, the mevalonic acid 
(MVA) pathways while in the plastids there are 
methylerythritol 4-phosphate (MEP) pathways 
(Eisenreich et al., 2001). In plastid, according to 
Matusova et al. (2005), chain reactions take place 
for the biosynthesis of carotenoid biosynthesis. 
The methylerythritol 4-phosphate (MEP) pathway 
produces precursors for carotenogenesis. In 
addition, the methylerythritol 4-phosphate (MEP) 
pathway is linked to the production of isoprene 
and diterpenes. Facet chains of chlorophylls and 
other photosynthesis-related compounds, as well 
as phylloquinone, tocopherol, and plastoquinone, 
as well as various hormones such as gibberellins, 
strigolactones, monoterpenes, and abscisic acid. 
Davies (2009) in their study found that  in tomatoes, 
the production of linear Carbon fourteen one of the 
most widely studied pathways is lycopene formation 
from geranylgeranyl diphosphate (GGPP). Fraser 
et al. (2007) demonstrated that  all carotenoid 
biosynthetic enzymes are located on the  plastid, 
and the genes are encoded via the nuclear genome, 
as shown in the figure. Gene transcripts that are 
encoding 1-deoxy-D-xylulose 5-phosphate synthase 
(SlDXS), geranylgeranyl pyrophosphate synthase 
(SlGGPPS), phytoene desaturase (SlPDS), phytoene 
synthase (SlPSY), carotenes isomerase (SlCrtISO), 
and z-carotene desaturase (SlZDS) are delimited. 
They perform a vital role in the formation of lycopene 
during the ripening of tomatoes. According to Walter 

et al. (2002), an ostensible preliminary regulatory 
phase of carotenoid synthesis is catalyzed via 
SlDXS at some stage in early fruit ripening. Recent 
studies showed that during fruit development, the 
accumulation of carotenoids has a strong correlation 
with the organ-specific and developmental regulation 
of tomato SlDXS gene expression. There are two 
anatomically diverse regulated SlDXS isogenes one is 
SlDXS1 while 2nd is SlDXS2 found in plants (Fantini 
et al., 2013).

Figure 1: Metabolic pathway of carotenoid in tomato 
(Solanum lycopersicum).

Paetzold et al. (2010) in their finding concluded that 
the formation of Strong lycopene during the ripening 
of Tomato fruit twisted out stringently interrelated 
with the gene SlDXS1 expression but not with that 
SlDXS2 gene. While, SlDXS2 gene transcripts are 
observed abundantly in immature petals of tomatoes  
then the mature petals and other vegetables of 
the same species, isolated trichomes, and leaves. It 
has been confirmed that the transcription factor 
MADS-box, ripening inhibitor (RINA) regulates 
the accumulation of carotenoids through interacting 
with SlPSY1 promoters in fruit tissues (Martel et al., 
2011). Fantini et al. (2013), evaluated the interactions 
of z-carotene isomerase (ZISO), CrtISO-Like 1, and 
CrtISO-Like 2 with virus-induced gene regulation. 
In the tomato fruit, there are 3 metabolic units were 
recognized consisting of PSY1, ZDS/CrtISO, and 
PDS/ZISO which catalyzes the biosynthesis of 
15-cis-phytoene, nine hundred and ninety-di-cis-z-
carotene, and all-trans-lycopene. In CrtISO-Like1/-
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Like 2 silenced, the disappearance of all-trans-z-
carotene and growth within the content material of 
lycopene, isomers had been found which demonstrate 
CrtISO Like 1 and CrtISOLike 2 plays a dynamic 
role in the formation of all-trans-z-carotene as shown 
in Figure 1. Lycopene is a key player in the cyclization 
of the carotenoid biosynthetic pathway (Fantini et al., 
2013). Route one results in b-carotene, violaxanthin, 
neoxanthin, and zeaxanthin which provide Precursors 
for the biosynthesis of Abscisic acid and strigolactones. 
The accompanying path ends in a-carotene and lutein 
formation. In tomatoes, SlLCY-B genes are present: 
SlLCY-B1which active in flowers and green-colored 
tissues while the other one SlLCY-B2 is precise 
to chromoplast. The up-regulation of SlLCYB2 
triggered b-carotene to accumulate within the beta 
fruit  (Ronen et al., 2000).

Environmental factors affecting on metabolic regulation 
of carotenoids  

There are many factors that have a great influence on 
the metabolic regulation of carotenoids in tomatoes.

Light intensity: Yuan et al. (2015) concluded that 
the intensity of light affects Phytochromes that are 
receptors of light. They involve rebuttal to red light 
and far-red light. To induce a physiological response, 
there is a red light that could trigger the protein. In 
tomato fruit, Phytochromes are Concerned with the 
regulation of the amount of lycopene accumulation 
(Alba et al., 2000).

Heat stress : According to Poiroux et al. (2010) and 
Hermanns et al. (2020)  moderate stress is effective 
in carotenoid metabolism without the occurrence of 
senescence and necrosis. In tomato fruits, oxidative 
strain will increase with the maturation of fruit 
and grasp a height at the last levels, which enable 
metabolic modifications and demulcent of fruit. 
Higher concentrations of antioxidants liposoluble 
compounds, such as b-carotene and lycopene 
accumulation for the safety of fruit as well as 
photosystem (Dall et al., 2013).

Temperature: The temperature has a giant impact 
on the flourishing and development of tomatoes. 
Temperatures much less than 12°C and greater than 
32°C could strongly inhibit and categorically obstruct 
the synthesis of lycopene (Wang et al., 2022).

Hormonal regulation of carotenoid metabolism in 
(Solanum lycopersicum) tomato
Role of ethylene: Phytohormones induced ethylene, 
auxin, and Abscisic acid. They all involve the ripening 
of tomato fruit and carotenoid accumulation. Ethylene 
performs a vital function inside the ripening of fruit, 
an impact of Ethylene in the regulation of carotenoid 
accumulation throughout the development of fruit 
in tomatoes was studied. Marty et al. (2005) in their 
study evaluated that the beginning of maturation is 
brought on through a dramatic increase in Ethylene 
manufacturing in tomatoes, correlated with the speedy 
accretion of lycopene and b-carotene, expressions of 
genes SlPSY1 and SlPDS is Ethylene dependent. 
During tomato fruit ripening, Various Transcription 
elements are concerned in regulating Ethylene 
dependent carotenoid accumulation, which has been 
identified as a primary regulator of ethylene in the 
regulation of tomato fruit maturation (Martel et al., 
2011; Fujisawa et al., 2014).

Role of indole-3-acetic acid: The concentration 
of free indole-3-acetic reduces at the beginning of 
ripening of fruit, where the concentration of IAA 
amino acid conjugate is enhanced by its synthetic 
genes, GH3, upregulated (Bottcher et al., 2010; Yuan 
et al., 2015).

Role of Abscisic acid: During the ripening of tomato 
fruit, abscisic acid is implicated in the development 
of tomato fruit, but understanding about the role of 
Abscisic acid within the carotenoid accumulation is 
restrained (Park et al., 2009; Yuan et al., 2015). The 
Suppression of the important Abscisic acid synthetic 
gene, SlNCED1, consequences in an improved 
level of Ethylene formation, downward regulatory 
expressions of SlLCY-B, also the upward regulatory 
expressions of SlPSY1 thru extended concentrations 
of carotenes, b-carotene, or lycopene. Ethylene, 
Indole acetic acid, and Abscisic acid are considered to 
be vital modulators in tomato fruit development (Sun 
et al., 2012; Khalighi et al., 2021). 

Brassinosteroids (BR) and Jasmonic acid ( JA): 
The roles of new phytohormones, in the regulatory 
mechanism of tomato ripening, have been examined. 
Jasmonic acid as well as its volatiles MeJA and methyl 
esters are all plant growth modulators that are taking 
part in the regulation of pollen viability, ripening 
of fruit, plant resistance, and secondary metabolites 
metabolisms (Chen et al., 2006; Jha et al., 2022).
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Health benefits of carotenoids
Much research has been accomplished on protective 
activities and health benefits of carotenoids.

Neuroprotective activity: Zeaxanthin is found to be 
protective against nervous disorders through the use 
of an experimental model that involves antioxidants, 
anti-apoptotic, and anti-inflammatory processes 
(Ramkumar et al., 2013; Sahin et al., 2019; Xu et al., 
2013; Yu et al., 2018a, b; Bian et al., 2012). Thomson 
et al. (2002)  in their study concluded that whilst 
supplementing Japanese quails with 35 mgkg-1 of 
zeaxanthin resulted in increased levels of this molecule 
inside the liver and fats and reduction in apoptosis 
and showed the safety of photoreceptor in oppose 
to cell death which was induced by light. Xu et al. 
(2013) during  their research found that zeaxanthin 
is protective to oxidative stress-induced through 
hydrogen peroxide on human retinal cells. Davey et al. 
(2020), in their  research, concluded that zeaxanthin 
in the retina is more suitable for retinal ganglion cell 
survival and enhances visual acuity. Ro zanowska et 
al. (2021)  studied the effects of carotenoids, such as 
zeaxanthin, in vitro, through the usage of RPE cells 
on photosensitized oxidation. They observed that 
zeaxanthin partially protects cells from photodamage. 
It’s also helpful for brain protection against infection 
and oxidative stresses (Gunal et al., 2021). Sun and 
colleagues in their study concluded that lutein can 
protect nerves damage by reducing oxidative stress in 
mice models (Sun et al., 2014).

Antimalarial activity: Parasitic disease Malaria 
caused by the genus Plasmodium (protozoa species). 
It is the oldest health trouble in the world, about 40% 
of the populace is suffering from it (Greenwood and 
Mutabingwa, 2002). It transmits to the human body 
through the bite by inflamed lady mosquito belongs 
to genus Anopheles some micronutrients along with 
carotenoids, consisting of lutein, zeaxanthin, and 
zinc resist various infections, in which malaria is also 
included (Metzger et al., 2001). As super antioxidants 
Carotenoids play a vital role within the modeling of 
the immune system. Various studies demonstrated 
the position of antioxidants and oxidative stress 
inside the pathogenicity of this pathogenic disorder 
(Pereira et al., 2015; Aziz et al., 2020). There are small 
antioxidant molecules that have been determined at 
low concentrations but act as antioxidant protection 
expedient in victims affected with malaria as a result 
of the Plasmodium vivax. Those molecules were 

pro-vitamin, vitamin A, vitamin E, vitamin C, and 
β carotenes, lycopene, lutein, etc. (Metzger et al., 
2001). Murillo and colleagues demonstrated that the 
main antioxidant Carotenoid, i.e., zeaxanthin offers 
protection in opposition to oxidative pressure caused 
by malarial contamination (Murillo and Fernandez, 
2019).

Anticancer activates: Various researches on 
cancer have exposed that zeaxanthin shows several 
consequences towards cell differentiation and cell 
proliferation (Bi et al., 2013). Zeaxanthin was 
observed to induce cell death in gastric cancer cells 
of humans via targeting the apoptosis signal pathway 
of mitochondria (Sheng et al., 2020). A foremost 
task for most cancers remedy is Cancer metastases, 
currently, various researchers have done to produce 
anti-metastatic medicines thru excessive efficiency 
and less harmfulness. It was found, zeaxanthin 
restricts attacks and relocation of numerous cells of 
the tumor (Bi et al., 2016), showing that in a dose-
dependent manner, Zeaxanthin inhibits the attack 
of hepatoma cells (Wu et al., 2010). The treatment 
of metastatic melanoma is prolonged via zeaxanthin, 
which strongly indicates the capacity of zeaxanthin 
as an effective dietary antagonist to chemo-resistant 
cells of cancer ( Juin et al., 2018).

Anti-AIDS activities: AIDS (Acquired Immune 
Deficiency Syndrome) is caused by contamination 
with HIV that is Human Immunodeficiency Virus. It 
is a life-killing disorder (Cutinho et al., 2020). There is 
a major issue in HIV is a deficiency of micronutrients, 
especially antioxidants. Carotenoids have been 
showing a major function in immunity, with the aid 
of decreasing the oxidative strain caused by means 
of an overproduction of ROS. High consumption 
of carotene and different vitamins in Immuno-
stimulation revealed that they could use for immune-
deficient human beings. If they have less consumption 
of these vitamins as happens in AIDS (Gao et al., 
2016). Zeaxanthin is a kind of dietary carotenoid 
that belongs to the circle of relatives of xanthophyll 
pigments comprises 60% of zeaxanthin as well as 40% 
of lutein, it alters antioxidative and antiinflammatory 
consequences (El-Akabawy and Sherif, 2019). Results 
from the literature demonstrated that carotenoids 
are an aptitude intranet to onset of particular HIV 
inhibitors (Loya et al., 1992).

Activity against helminthiasis: Parasitic infection 
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Helminths, which include parasitic worms of the 
intestine, cause helminthiasis. (1) nematodes, also 
known as roundworms, and (2) platyhelminths, also 
known as tapeworms, are two important phyla of 
nematodes. These worms produced harmful results 
at the host, triggering blood loss with the aid of 
secreting toxic substances. That can cause extreme 
injury to tissues that live inside the gastrointestinal 
tract and expand thru the liver (Parle and Gurditta, 
2011). Intestines are the supreme place for these 
worms. The enhancement of these worms inside the 
intestine causes severe health problems. Carotenoids 
play a vital role against these parasites. Various 
researches showed the effectiveness of Cucurbits 
as a natural remedy, widely recognized for their 
health advantages and medicinal value, specifically 
used as an antihelmintic drug. Studies revealed that 
Cucurbits are rich in vitamins, carotenoids, i.e., 
lycopene, zeaxanthin, lutein, and minerals so they can 
effectively be used against roundworms (Avinash and 
Rai, 2017).

Antiosteoporosis activities: Systemic metabolic 
bone disease is called osteoporosis (Foger et al., 2020). 
The decline in bone power which influences bone 
to emerge as brittle or weak leads to osteoporosis, 
increasing the risk of bone fragility and bone fractures 
(Sheweita et al., 2014). The imbalance between 
osteoblastic bone formation and osteoclastic bone 
resorption causes this disease. This causes bone tissue 
to deteriorate structurally and bone mineral density 
reduced ( Jiao et al., 2019). Many factors can cause 
Osteoporosis such as physical activities, lifestyle, 
age, environmental factors (Manios et al., 2007). 
Some other causes, including excessive caffeine 
consumption, alcohol intake, deficiency of nutrients, 
smoking play a major role in enhancing the amount 
of bone loss that causes osteoporosis disease (Rao 
et al., 2014). Epidemiologic studies revealed that 
reactive oxygen species are also diagnosed as a major 
lifestyle risk factor that’s responsible for bone mass 
loss (Manolagas and Parfitt, 2010). Age is likewise an 
important component, the excessive manufacturing 
of unfastened radicals and ROS levels grow with 
age, persuading oxidative damage to lipids, DNA, 
and protein that result in osteoporosis (Zhang et 
al., 2011), Epidemiological studies evaluated that 
excessive intake of antioxidants, carotenes may be 
beneficial in protecting the bone metabolism against 
oxidative stress and maintaining bone health (Sugiura 
et al., 2012). Xu and Fellows (2013), Validated that 

there may be an association between carotenoids, 
i.e., lycopene, lutein, and zeaxanthin, and the threat 
of hips fracture. Excessive dietary consumption of 
β-carotene reduced hip fracture risks.

Ophthalmological activities: Lutein has a high 
preventative potential in opposition to age-associated 
macular sickness, which ends up in blindness and 
vision impairment in modern ranges (MBiostat et 
al., 2014; Feng et al., 2019). Lesser consumption 
of berries and leafy veggies promote age-associated 
macular disorder (Abdel et al., 2013). Carotene 
Lutein uses a potent potential to enhance the visible 
acuity and helps a clean vision (Murray et al., 2013; 
Buscemi et al., 2018; Maci et al., 2016; Weigert et al., 
2011; Khalighi et al., 2021; Liu et al., 2015). Sun et 
al. (2012) in their research on mice models evaluated 
lutein confers substantial neuroprotection regarding 
Brief cerebral ischemic harm. Lutein’s dose from 7.5 
to thirty mg/kg prevents nerve damage thru the aid 
of decreasing the wide variety of apoptotic cells and 
reducing oxidative stress (Sun et al., 2012). Li and Lo 
(2010) demonstrated that carotene lutein acts as a 
potent neuroprotective agent and protects the nerve 
system (Li and Lo, 2010).

Cardioprotective activities: Cardiac diseases such 
as renal failure and heart attacks, have become a 
major threat to life worldwide, a large number of the 
world’s populace is stricken by it (Zaccara et al., 2020; 
Kelishadi et al., 2022). Various studies have been done 
to evaluate the ability of cardioprotective functions 
and antioxidant characteristics of carotenoids (Ribeiro 
et al., 2018). Leermakers and fellows Concluded that 
lutein may serve as atherosclerosis and inflammatory. 
They determined varying associations among lutein 
and blood stress, resistance to insulin, blood lipids, 
and adiposity (Leermakers et al., 2016). Lutein 
presents an anti-inflammatory motion to coronary 
thrombosis artery patients, these assets of lutein can 
reduce coronary artery issues (Chung et al., 2017).

Shield UV radiations and skin diseases: Severe skin 
infections in human beings are because of different 
environmental stresses, such as excessive contact with 
ultraviolet rays. Which brought on photooxidation 
harms the surface of the skin. Injury is concerned in 
skin photoaging, development of erythema, immune 
suppression, photo dermatosis, sunburn, and skin 
cancer all caused by the formation of reactive oxygen 
species (Lee, 2014; Melendez-Martínez et al., 2019). 
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Zeaxanthin is known to be a leading pigment confined 
within the molecule, the important carotene that is 
located in human skin. Studies showed that ultraviolet 
rays caused Deoxyribonucleic acid impairment in 
epithelial cells of rats, and neuroblastoma cells of 
humans can be protected by xanthophyll (Santocono 
et al., 2006). Huang and his coworkers of their 
current studies concluded that zeaxanthin shields 
the human conjunctival cells in opposition to pro-
inflammatory responses and UVB-precipitated cell 
death (Huang et al., 2019). Zeaxanthin additionally 
inhibits the initiation of UVB signaling pathway 
and lipid peroxidation in human epithelial cells 
(Chitchumroonchokchai et al., 2004). Palombo 
demonstrated that the mixed remedy of lutein and 
zeaxanthin enhanced skin elasticity its hydration and 
photoprotective impact, and reduce lipid peroxidation 
(Palombo et al., 2007). Zmitek and coworkers in their 
studies revealed that lutein has capability advantages 
towards pores and skin swelling, edema, hyperplasia 
prompted by UV rays (Zmitek et al., 2020).

Antiallergic activity: Simon (2019), demonstrated 
that allergic diseases are caused by an imbalance in 
the immune systems, it is induced through a reactions 
system that shows a severe inflammatory reaction, 
inclusive of allergic pores and skin sicknesses, 
urticaria, eczema dermatitis, rhinitis, angioedema, and 
reactions of drugs hypersensitivity. Allergic diseases 
because by inoffensive materials, i.e., meals, mites, 
dust particles, pollen, chemical substances, insects, 
and animal dander (Vo et al., 2012). Carotenoids 
together with zeaxanthin, lycopene, and lutein have 
the ability to adjust the responses of allergy by 
distinguished biological indicators within the skin and 
immune systems. Nowadays, a nice effect on human 
skin is shown by the neighborhood administration 
of zeaxanthin and its supplement (Schwartz et al., 
2016). According to new research, zeaxanthin has a 
high level of radical scavenging activity against skin 
allergic infections caused by reactive oxygen species 
(Aziz et al., 2020), Skin damage and inflammation 
were triggered as a result of this (Nishino et al., 2017).

Effects for oral and dental infection: Gum 
infections, cavities, tooth infections, oral cancers, and 
plaque, all are oral and dental diseases. Lutein has 
anti-inflammatory and antioxidant activities. Lutein 
decreases the threat of oral and dental infections 
because of its antioxidant property. It is found that 
carotene lutein and zeaxanthin significantly reduced 

the possibility of oral diseases. Applications of 
Lutein and zeaxanthin showed the giant antioxidant 
protecting actions against oral sickness (Mitri et al., 
2011c).

Conclusions and Recommendations

Carotenoids are the utmost valuable traits of tomato, 
with fitness, nutritional and industrial qualities. There 
is a correlation between fruit volatiles and carotenoid 
degrees, the greater concentration of carotenoids in a 
fruit, the extra taste volatiles are formed, which makes 
tastier and nutritious tomato. A greater need for 
carotenoids to function like antioxidants for plant life 
to be green garages for the manufacture of economically 
vital excessive value-able carotenoids. Which brought 
about increased curiosity sightseeing regulatory 
metabolism of carotenoid. Carotenoid metabolism in 
tomatoes, measured at a couple of stages by means 
of growth plans, metabolic alerts, and environmental 
aspects. Environmental influences, which include 
CO2, light, and heat enhance the accumulation 
of carotenoids in culmination to reduce the awful 
behavior of customers to genetically engrained 
foods. Further studies and advanced techniques 
such as omic, phenomics, genomics, transcriptomics, 
proteomics, metabolomics is needed to study the 
carotenoid metabolism in tomatoes for satisfying 
scientific interests and agricultural needs. Many 
studies indicate that carotenoids can be protective 
against age-related diseases, oral and dental infections, 
coronary heart diseases, and has neuroprotective 
protection, antimalarial and anthelmintic activities, 
and antimicrobial interests. Carotenoids along with 
Lutein have also been beneficial for the eyes. Lutein 
and zeaxanthin play a vital role in skin protection 
because of their antioxidant characteristics. This 
review article provides an overview of Carotenoid 
Metabolism, Regulation in tomato, and its health 
benefits, it comprises all of the existing literature 
about the metabolism of carotenoid and health 
benefits and may be helpful in the development of 
new pharmacologically active food in the future.
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